版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市聚奎中学高一数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角为().A. B.C. D.2.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切3.已知集合,集合,则下列结论正确的是A. B.C. D.4.若函数的定义域是,则函数的定义域是()A. B.C. D.5.若,则()A.“”是“”的充分不必要条件 B.“”是“”的充要条件C.“”是“”的必要不充分条件 D.“”是“”的既不充分也不必要条件6.已知幂函数,在上单调递增.设,,,则,,的大小关系是()A. B.C. D.7.已知是角的终边上的点,则()A. B.C. D.8.设,则函数的零点所在的区间为()A. B.C. D.9.将函数,且,下列说法错误的是()A.为偶函数 B.C.若在上单调递减,则的最大值为9 D.当时,在上有3个零点10.已知、是方程两个根,且、,则的值是()A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值是,则实数的取值范围是___________12.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.13.对于定义在上的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调递增的;②当时,函数的值域也是,则称是函数的一个“递增黄金区间”.下列函数中存在“递增黄金区间”的是:___________.(填写正确函数的序号)①;②;③;④.14.已知幂函数(为常数)的图像经过点,则__________15.已知一组数据,,…,的平均数,方差,则另外一组数据,,…,的平均数为______,方差为______16.函数的部分图像如图所示,轴,则_________,_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.18.已知函数,其定义域为D(1)求D;(2)设,若关于的方程在内有唯一零点,求的取值范围19.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.20.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥BC,,D为线段AC的中点,E为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)求二面角P-BC-A的平面角的大小.21.已知函数,.(1)若在上单调递增,求实数a的取值范围;(2)求关于的不等式的解集.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设直线的倾斜角为∵直线方程为∴∵∴故选B2、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.3、B【解析】由题意得,结合各选项知B正确.选B4、C【解析】由题可列出,可求出【详解】的定义域是,在中,,解得,故的定义域为.故选:C.5、C【解析】根据推出关系依次判断各个选项即可得到结果.【详解】对于A,,,则“”是“”的必要不充分条件,A错误;对于B,,,则“”是“”的充分不必要条件,B错误;对于C,,,则“”是“”的必要不充分条件,C正确;对于D,,,则“”是“”的充分不必要条件,D错误.故选:C.6、A【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,当时,,此时在上单调递减,不合题意.所以.因为,,,且,所以,因为在上单调递增,所以,又因为为偶函数,所以,所以.故选:A【点睛】关键点点睛:掌握幂函数的概念和性质、指数函数与对数函数的单调性是解题关键.7、A【解析】根据三角函数的定义求解即可.【详解】因为为角终边上的一点,所以,,,所以故选:A8、B【解析】根据的单调性,结合零点存在性定理,即可得出结论.【详解】在单调递增,且,根据零点存在性定理,得存在唯一的零点在区间上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题.9、C【解析】先求得,然后结合函数的奇偶性、单调性、零点对选项进行分析,从而确定正确选项.【详解】,,所以,为偶函数,A选项正确.,B选项正确.,若在上单调递减,则,,由于,所以,所以的最大值为,的最大值为,C选项错误.当时,,,当时,,所以D选项正确.故选:C10、B【解析】先用根与系数的关系可得+=,=4,从而可得<0,<0,进而,所以,然后求的值,从而可求出的值.【详解】由题意得+=,=4,所以,又、,故,所以,又.所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、[-1,0]【解析】函数,当时,函数有最大值,又因为,所以,故实数的取值范围是12、【解析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.13、②③【解析】由条件可得方程有两个实数解,然后逐一判断即可.【详解】∵在上单调递增,由条件②可知,即方程有两个实数解;∵x+1=x无实数解,∴①不存在“递增黄金区间”;∵的两根为:1和2,不难验证区间[1,2]是函数的一个“递增黄金区间”;在同一坐标系中画出与的图象如下:由图可得方程有两个根,∴③也存在“递增黄金区间”;在同一坐标系中画出与的图象如下:所以没有实根,∴④不存在.故答案为:②③.14、3【解析】设,依题意有,故.15、①.11②.54【解析】由平均数与方差的性质即可求解.【详解】解:由题意,数据,,…,的平均数为,方差为故答案:11,54.16、①.2②.##【解析】根据最低点的坐标和函数的零点,可以求出周期,进而可以求出的值,再把最低点的坐标代入函数解析式中,最后求出的值.【详解】通过函数的图象可知,点B、C的中点为,与它隔一个零点是,设函数的最小正周期为,则,而,把代入函数解析式中,得.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上恒成立.当时,显然成立当时,在上恒成立.令,.只需.∵在区间上单调递增,∴.令.只需.而,且∴.故.综上,的取值范围是.18、(1)(2)【解析】(1)由可求出结果;(2)由求出或,根据方程在内有唯一零点,得到,解得结果即可.【小问1详解】由得,得,得,所以函数的定义域为,即.【小问2详解】因为,所以,所以或,因为关于的方程在内有唯一零点,且,所以,解得.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函数即可解得,需要检验;(Ⅱ)由得,进而得,令,得,结合的范围求解即可.试题解析:(Ⅰ)经检验成立.(Ⅱ).,设设..当时,成立.当时,成立.当时,不成立,舍去.综上所述,实数的取值范围是.20、(1)见解析(2)【解析】(1)由线面垂直的判定定理可得平面,从而可得,证明,再根据线面垂直的判定定理可得平面PAC,再根据面面垂直的判定定理即可得证;(2)由线面垂直的性质可得,再根据线面垂直的判定定理可得平面,则有,从而可得即为二面角P-BC-A的平面角,从而可得出答案.【小问1详解】证明:因为PA⊥AB,PA⊥AC,,所以平面,又因平面,所以,因为D为线段AC的中点,,所以,又,所以平面PAC,又因为平面BDE,所以平面BDE⊥平面PAC;【小问2详解】解:由(1)得平面,又平面,所以,因为AB⊥BC,,所以平面,因为平面,所以,所以即为二面角P-BC-A平面角,中,,所以,所以,即二面角P-BC-A的平面角的大小为.21、(1);(2)答案见解析.【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中地理上学期第16周 地理环境对区域发展的影响教学实录
- 邯郸2024年河北邯郸涉县招聘警务辅助人员30人历年参考题库(频考版)含答案解析
- Propionylmaridomycin-生命科学试剂-MCE
- Potassium-perfluorohexanesulfonate-生命科学试剂-MCE
- 驻外会计年终工作总结
- 2023四年级语文上册 第三单元 10 爬山虎的脚配套教学实录 新人教版
- 中国组装自动化仪表项目投资可行性研究报告
- 中国瑞贝克项目投资可行性研究报告
- 第4单元《分数的意义和性质》真分数和假分数 教学实录-2024-2025学年小学数学五年级下册同步教学(苏教版)
- 2023年低温多效海水淡化装置项目筹资方案
- 庆祝澳门回归25周年主题班会 课件 (共22张)
- 华南农业大学农学院生物技术复习题附答案
- 乐高——人形机器人搭建(图2)
- 内螺纹铜管成型技术与工艺(综述)
- 年消化10万吨荔枝产荔枝酒的可行性研究报告
- 群塔作业方案(图文并茂,十分详细)
- 花城三年级音乐乐理知识总结(共5页)
- 通风空调工程系统调试验收记录(送、排风系统)
- 纸箱跌落实验报告(共2页)
- 绿色环保引领企业申请表(模板)
- 【设计管理】设计单位履约评价表(规划、概念及方案设计)
评论
0/150
提交评论