




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市越秀区荔湾区联考2025届高二数学第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列满足,则其前10项之和为()A.140 B.280C.68 D.562.在平面直角坐标系中,双曲线C:的左焦点为F,过F且与x轴垂直的直线与C交于A,B两点,若是正三角形,则C的离心率为()A. B.C. D.3.已知、是椭圆的两个焦点,P为椭圆C上一点,且,若的面积为9,则的值为()A.1 B.2C.3 D.44.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=15.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或116.函数在上的最小值为()A. B.C.-1 D.7.现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()斤A.6 B.7C.9 D.158.已知椭圆的离心率为,左、右焦点分别为、,过作轴的平行线交椭圆于、两点,为坐标原点,双曲线的虚轴长为,且以、为顶点,以直线、为渐近线,则椭圆的短轴长为()A. B.C. D.9.在四面体中,,,,且,,则等于()A. B.C. D.10.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.111.直线在y轴上的截距为()A. B.C. D.12.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.1362二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,,若,则______14.若,,都为正实数,,且,,成等比数列,则的最小值为______15.在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)16.若不等式的解集为,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点是圆上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于、两点,记、的斜率分别是、,以、为直径的圆的面积分别为、当、都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由18.(12分)直线经过点,且与圆相交与两点,截得的弦长为,求的方程.19.(12分)已知直线,圆.(1)证明:直线l与圆C相交;(2)设l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为,在点B处的切线为,与的交点为Q.试探究:当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.20.(12分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.21.(12分)若存在实常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线y=kx+b为和的“隔离直线”.已知函数,.(1)证明函数在内单调递增;(2)证明和之间存在“隔离直线”,且b的最小值为-4.22.(10分)已知直线.(1)若,求直线与直线的交点坐标;(2)若直线与直线垂直,求a的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据等差数列的性质,可得,结合等差数列的求和公式,即可求解.【详解】由题意,等差数列满足,根据等差数列的性质,可得,所以数列的前10项和为.故选:A.2、A【解析】设双曲线半焦距为c,求出,由给定的正三角形建立等量关系,结合计算作答.【详解】设双曲线半焦距为c,则,而轴,由得,从而有,而是正三角形,即有,则,整理得,因此有,而,解得,所以C的离心率为.故选:A3、C【解析】根据椭圆定义,和条件列式,再通过变形计算求解.【详解】由条件可知,,即,解得:.故选:C【点睛】本题考查椭圆的定义,焦点三角形的性质,重点考查转化与变形,计算能力,属于基础题型.4、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C5、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系6、D【解析】求出函数的导函数,根据导数的符号求出函数的单调区间,再根据函数的单调性即可得出答案.【详解】解:因为,所以,当时,,单调递减;当时,,单调递增,故.故选:D.7、D【解析】设该等差数列为,其公差为,根据题意和等差数列的性质可得,进而求出结果.【详解】设该等差数列为,其公差为,由题意知,,由,解得,所以.故选:D8、C【解析】不妨取点在第一象限,根据椭圆与双曲线的几何性质,以及它们之间的联系,可得点的坐标,再将其代入椭圆的方程中,解之即可【详解】解:由题意知,在椭圆中,有,在双曲线中,有,,即,双曲线的渐近线方程为,不妨取点在第一象限,则的坐标为,即,将其代入椭圆的方程中,有,,解得,椭圆的短轴长为故选:9、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.10、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B11、D【解析】将代入直线方程求y值即可.【详解】令,则,得.所以直线在y轴上的截距为.故选:D12、B【解析】观察前4项可得,从而可求得结果【详解】由题意可得,……,观察规律可得,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】根据题意,易知,因为,所以,即,解得故答案为:714、##【解析】利用等比中项及条件可得,进而可得,再利用基本不等式即得.【详解】∵,,都为正实数,,,成等比数列,∴,又,∴,即,∴,∴,当且仅当,即取等号.故答案为:.15、甲、乙、丙、丁【解析】结合对称性判断甲、乙的正确性;通过对比和与坐标轴在第一象限围成的图形面积来判断丙丁的正确性.【详解】对于甲:交换方程中和的位置得,所以曲线关于对称,甲回答正确.对于乙:和两个点都满足方程,所以曲线关于原点对称,乙回答正确.对于丙:直线与坐标轴在第一象限围成的图形面积为,,,在第一象限,直线与曲线都满足,,,所以在第一象限,直线的图象在曲线的图象上方,所以,丙回答正确.对于丁:圆与坐标轴在第一象限围成的图形面积为,在第一象限,曲线与曲线都满足,,,,所以在第一象限,曲线的图象在曲线的图象下方,所以,丁回答正确.故答案为:甲、乙、丙、丁16、11【解析】根据题意得到2与3是方程的两个根,再根据两根之和与两根之积求出,进而求出答案.【详解】由题意得:2与3是方程的两个根,则,,所以.故答案为:11三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)是定值,.【解析】(1)由条件可得点轨迹满足椭圆定义,设出椭圆方程,由,的值可得的值,从而求得轨迹方程;(2)设出直线的方程,结合韦达定理,分别求得为定值,也为定值,从而可得是定值【小问1详解】由题意知,,根据椭圆的定义知点的轨迹是以,为焦点的椭圆,设椭圆的方程为,则,,曲线的方程为;【小问2详解】由题意知直线的方程为且m≠0),设直线与椭圆的交点为,,,,由得,,,,,,,,,,是定值,为.18、或【解析】直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.19、(1)证明见解析;(2);(3)点Q恒在直线上,理由见解析.【解析】(1)求出直线过定点,得到在圆内部,故证明直线l与圆C相交;(2)设出点,利用垂直得到等量关系,整理后即为轨迹方程;(3)利用Q、A、B、C四点共圆,得到此圆方程,联立,求出相交弦的方程,即直线的方程,根据直线过的定点,得到,从而得到点Q恒在直线上.【小问1详解】证明:直线过定点,代入得:,故在圆内,故直线l与圆C相交;【小问2详解】圆的圆心为,设点,由垂径定理得:,即,化简得:,点M的轨迹方程为:【小问3详解】设点,由题意得:Q、A、B、C四点共圆,且圆的方程为:,即,与圆C的方程联立,消去二次项得:,即为直线的方程,因为直线过定点,所以,解得:,所以当m变化时,点Q恒在直线上.【点睛】本题的第三问是稍有难度的,处理方法是根据四点共圆,直径的端点坐标,求出此圆的方程,与曲线联立后得到相交弦的方程,是处理此类问题的关键.20、(1)增区间为(2),【解析】(1)求导,由判别式可判断导数符号,然后可得;(2)求导,求导数零点,比较函数极值和端点函数值,结合单调性可得.【小问1详解】因为,所以,,因为,所以恒成立所以的增区间为.【小问2详解】当时,,令,解得,当时,,当时,,当时,所以,函数在上单调递增,在上单调递减,在上单调递增.因为,所以在区间上的最大值,最小值为21、(1)见解析(2)见解析【解析】(1)由导数得出在上的单调性;(2)设和之间的隔离直线为y=kx+b,由题设条件得出对任意恒成立,再由二次函数的性质求解即可.【小问1详解】,当时,在上单调递增在内单调递增【小问2详解】设和之间的隔离直线为y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国奥列斯行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国天然调味料载体行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国壬基酚乙氧基化物行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国垒球设备行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国固定式消防炮行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国商务会所行业市场发展分析及发展趋势与投资机会研究报告
- 2025-2030中国吡罗酮乙醇胺行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国单车鞋行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国医美行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030中国化学短纤维行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 广东省简介PPT-广东省PPT介绍
- 零基础形体舞蹈(上)知到章节答案智慧树2023年广西师范大学
- 川2020G145-TY 四川省超限高层建筑抗震设计图示
- 配电安全知识配网典型事故案例
- 牛津译林版中考英语一轮复习八年级上册Unit4复习课件
- YY/T 1543-2017鼻氧管
- GB/T 25499-2010城市污水再生利用绿地灌溉水质
- GB/T 19817-2005纺织品装饰用织物
- 处方规范书写与管理 课件
- 针灸方法汇总培训课件
- 浙江省房屋建筑面积测算实施细则(试行)全文20110522
评论
0/150
提交评论