版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TowardsEfficientTemporalGraphLearning:
Algorithms,Frameworks,andTools
RuijieWangWanyuZhaoDachunSunCharithMendisTarekAbdelzaher
UniversityofIllinoisUrbana-Champaign
{ruijiew2,wanyu2,dsun18,charithm,zaher}@I
Time:1:45PM-17:30PM,October21,2024
Location:Room120C,BoiseCentre,Boise,ID
Webpage:
https://wjerry5.github.io/cikm2024-tutorial/
Contents
•PartI-Introduction
•PartII-Data-EfficientTemporalGraphNeuralNetwork
•30-minCoffeeBreak
•PartIII-Resource-EfficientTemporalGraphNeuralNetwork
•PartIV-DiscussionandFutureDirections
3
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
BroadApplicationDomainsofGraphData
SocialNetworkAnalysisKnowledgeGraphReasoningWebMining
RecommendationScientificDiscoveryLLMPrompting&Reasoning
Universallanguagefordescribinginterconnecteddata!
4
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Real-WorldGraphsareEvolving–TemporalGraphs
TemporalFactsinKGs
MolecularDynamics
UserOnlineBehaviors
DynamicalSystems
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Real-WorldGraphsareEvolving–TemporalGraphs
oGraphshavetime-evolvingcomponents,e.g.,
oTopologystructures
oAdd/deletenodes
oAdd/deleteedges
oInputfeatures
oNode-levelfeatures
oEdge-levelfeatureso…
Dynamicedges[1]Dynamicnodeset[2]
Dynamicnode&edgefeatures[3]
[1]
/temporal-graph-networks-ab8f327f2efe
.
[2]Wanget.al.,LearningtoSampleandAggregate:Few-shotReasoningoverTemporalKnowledgeGraphs.
[3]ThomasKipf,EthanFetaya,Kuan-ChiehWang,MaxWelling,andRichardZemel.Neuralrelationalinferenceforinteractingsystems.
5
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
TemporalGraphs–Definition
oDiscrete-timevs.continuous-timetemporalgraphs
oDiscrete-timetemporalgraphs
oG={G1,…,GT−1,GT},
owhereGt=(ℰt,vt,xt)denotesone
snapshot.Discrete-timeexample[1]
oContinuous-timetemporalgraphs
oG={(ei,ej,t,+/−)},
owhereei,ej∈ℰ,0≤t<T
Continuous-timeexample[2]
Howtoenabledeeplearningontemporalgraphs?
[1]Fuet.al.,NaturalandArtificialDynamicsinGNNs.
[2]Conget.al.,OntheGeneralizationCapabilityofTemporalGraphLearningAlgorithms:TheoreticalInsightsandaSimplerMethod.
6
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
GraphNeuralNetworks(GNNs)
oNodeshaverepresentationsateachlayer,wherelayer-0representationsareinputfeaturesx.
oBasicoperations:Sample&Aggregation+Update
Step1:Sample&Aggregate
Combinemsgsfromneighbors
Step2:Update
[1]WilliamL.HamiltonandJianTang.“GraphRepresentationLearning”.TutorialatAAAI2019.
Applyneuralnetworks
7
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
TemporalGraphNeuralNetworks(TGNNs)
oNodeshaverepresentationsateachlayer,wherelayer-0representationsareinputfeaturesx.
oNewoperationdesigns:Sample&Aggregation+Update
Step1:Sample&Aggregate
Combinemsgsfromneighbors
8
Step2:Update
Applyneuralnetworks
[1]WilliamL.HamiltonandJianTang.“GraphRepresentationLearning”.TutorialatAAAI2019.
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
TemporalGraphNeuralNetworks(TGNNs)
oCategoriesofTGNNs
oTGNNwithRNN
oTGNNwithselfattention
JODIE[1]
DySAT[2]
oTGNNwithmemory
TGAT[3]
oTGNNwithmemory&selfattention
o……
TGN[4]
[1]Kumaretal.,JODIE:PredictingDynamicEmb.TrajectoryinTemporalInteractionNetworks.[2]Sankaretal.,DySAT:DeepNeuralRepr.LearningonDynamicGraphsviaSelf-Attention
Networks.
[3]Xuetal.,InductiveRepresentationLearningonTemporalGraphs
[4]Rossietal.,TemporalGraphNetworksforDeepLearningonDynamicGraphs
9
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
TrainingandinferencepipelineofTGNNs
Evaluation
InputGraph
TGNNs
PredictionHead
Predictions
Labels
Loss
Function
10
oRepresentationlearning+task-relatedoptimization.
Time-EvolvingEmbeddings
[1]Congetal.,DoWeReallyNeedComplicatedModelArchitecturesForTemporalNetworks?
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Data-EfficiencyIssueofTGNNs
Evaluation
TGNNs
Time-EvolvingEmbeddings
PredictionHead
Predictions
Labels
Loss
Function
oTrainingTGNNsrequiresrelativelyabundantlabeleddata.
InputGraph
oInsufficientlabeleddataforreal-worldapplications:
oIndirectlabels
oScarcityoftask-specificlabels
oLimitedlabelsfornewtasks/distributions
11
12
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ComputationpipelineofTGNNs
oTrainingcomputation
FeatureFetching
Model
Computation
FeatureUpdate
Inference
oInferencecomputation
NeighborSampling
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Resource-EfficiencyIssueofTGNNs
NeighborSampling
Model
Computation
FeatureUpdate
Inference
oFastgrowingoftemporalgraphsv.s.limitedresources
FeatureFetching
13
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ScopeofThisTutorial
PartII
Data-EfficientTGNN
EfficientTGNN
PartIII
Resource-EfficientTGNN
oWefocusonalgorithm
designandoptimization
techniquestoaddressthechallengesposedby
insufficientlabels.
14
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ScopeofThisTutorial
EfficientTGNN
PartII
Data-EfficientTGNN
PartIII
Resource-EfficientTGNN
Self-SupervisedLearning
Weakly-SupervisedLearning
Few-ShotLearning
15
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ScopeofThisTutorial
EfficientTGNN
PartII
Data-EfficientTGNN
PartIII
Resource-EfficientTGNN
Self-SupervisedLearning
oWefocusonsystem
Weakly-SupervisedLearning
accelerationtoenablelarge-scaletrainingandinferencewithlimited
Few-ShotLearning
resources.
16
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ScopeofThisTutorial
EfficientTGNN
PartII
Data-EfficientTGNN
PartIII
Resource-EfficientTGNN
Self-SupervisedLearning
TrainingAcceleration
Weakly-SupervisedLearning
InferenceAcceleration
Few-ShotLearning
DistributedTrainingAcceleration
17
Contents
•PartI-Introduction
•PartII-Data-EfficientTemporalGraphNeuralNetwork
•30-minCoffeeBreak(15:30-16:00)
•PartIII-Resource-EfficientTemporalGraphNeuralNetwork
•PartIV-DiscussionandFutureDirections
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ScopeofThisTutorial
EfficientTGNN
PartII
Data-EfficientTGNN
PartIII
Resource-EfficientTGNN
TrainingAcceleration
Self-SupervisedLearning
InferenceAcceleration
Weakly-SupervisedLearning
DistributedTrainingAcceleration
Few-ShotLearning
19
20
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Self-SupervisedLearningonTemporalGraphs
•Introduction&Background
•Self-SupervisionbyReconstruction
•Self-SupervisionbyContrastiveApproach
•Self-SupervisionbyMultiviewConsistency
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Introduction–Self-SupervisedLearning(SSL)
oLearningusefulrepresentationswithoutrequiringlabeleddata.
oReliesontheinherentstructureandtemporaldynamicsofthegraphitself.
InductiveTask
Examineinferredrepresentationsofunseennodeby
predictingthefuturelinksbetweenunseennodesand
classifythembasedontheirinferredembedding
dynamically
TransductiveTask
Examinenodeembeddingsthathavebeenobservedin
training,viathefuturelinkpredictiontaskandthenode
classification.
t1t2tn
21
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ChallengesonTemporalGraphs
oChallenge1:Nodeembeddingsshouldalsofunctionoftime.
oChallenge2:Temporalconstraintsonneighborhoodaggregationmethods.
oChallenge3:Possiblymultiplenodeinteractions.
[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs22
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Background–AttentionMechanismonGraphs
oQueryneighborsbykeysderivedfromtheirrepresentations,aggregatingtheir
valuebytheattentionweight.
oQuestion:Howtoinvolvetemporalinformation?
PetarVeličković,GuillemCucurull,ArantxaCasanova,AdrianaRomero,PietroLiò,YoshuaBengio,GraphAttentionNetworks23
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Background–TimeEncoding
oAformof“positionalencoding”concatenatedtothenoderepresentation.
oGenerateavectorencodinggivenarealnumber.
oEncodingrepresentstimespanratherthanabsolutevalueoftime(Translation-invariance).
K(t1,ta):=(I(t1),J(ta)》K(t1+c,tz+c)=k(t1,ta)
UsingBochner’sTheoremandMonteCarloapproximation:
24
K(t,ta)~⃞工:1cos(urt1)cos(orta)+sin(urt1)sin(urta)
[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs
26
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Background–TemporalSubgraphSampling
oTemporalsubgraphsamplingiskeytobatch-wisetrainingandcontrastivepairconstruction.
oMessagepassingdirectionsmustalignwiththeobservedchronologicalorders.
oGivenatargetnumberofnodesforsubgraph,candidatescanbefurtherweightedby
structuralortemporalimportance.
oDegree,centrality,orPageRank
oTimeelapsed.
27
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Introduction–Self-SupervisedLearning(SSL)
oSSLparadigmstypicallygeneratesupervisionsignalsthroughdesignedtasks:
oTransductivefuturelinkreconstruction.Lossisbasedoncrossentropy.
oContrastivelearning:learningfrompositiveandnegativepairofexamples.Lossisbasedonsimilaritymeasure.
oMultiviewconsistency:representationsshouldberobustunderperturbationsandagreewitheachother.Lossisbasedonregularizations.
NewBatch
EdgeProbabilities
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyReconstruction:TGAT
oObjective:Producetime-awarerepresentationforatargetnodeattimepointt.
oMotivation:AnalogoustoGraphSAGEorGAT,takestemporalneighborhoodwithhiddenrepresentationsandtimestamps,andaggregate.
oMethod:Alocalaggregationoperator,usingattentionmechanism.
0
oLink
prediction
loss:
28
[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyReconstruction:TGAT
oExperiments:Transductive&inductivelearningtaskforfuturelinkprediction.
[1]DaXu,ChuanweiRuan,EvrenKorpeoglu,SushantKumar,KannanAchan,InductiveRepresentationLearningonTemporalGraphs29
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyReconstruction:TemporalGraphNetworks(TGN)
oMotivation:Viewingdynamicgraphsassequencesoftimedevents.
oMethod:Fivemodulesthatprocessdynamicgraphsasaseriesofnode-wise
event,interactionevent,ordeletionevent,andsavethenodestatestomemory.
Aggregatedmessages
Rawmessages
Messages
Memory
m:(t)=msgs(s,(t"),sj(t"),At,ej(t))
Identity,MLP
Mostrecent,Mean
LSTM,GRU
[1]EmanueleRossi,BenChamberlain,FabrizioFrasca,DavideEynard,FedericoMonti,MichaelBronstein,TemporalGraphNetworksforDeepLearningonDynamicGraphs30
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyReconstruction:TemporalGraphNetworks(TGN)
oMotivation:Viewingdynamicgraphsassequencesoftimedevents.
oMethod:Fivemodulesthatprocessdynamicgraphsasaseriesofnode-wise
event,interactionevent,ordeletionevent,andsavethenodestatestomemory.
NewBatch
MemoryNodeEmbeddingsEdgeProbabilities
Identity,
TimeProjection
TemporalGraphAttention
31
TemporalGraphSum
[1]EmanueleRossi,BenChamberlain,FabrizioFrasca,DavideEynard,FedericoMonti,MichaelBronstein,TemporalGraphNetworksforDeepLearningonDynamicGraphs
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyReconstruction:TemporalGraphNetworks(TGN)
oExperiments:Transductive&inductivelearningtaskforfuturelinkprediction.
[1]EmanueleRossi,BenChamberlain,FabrizioFrasca,DavideEynard,FedericoMonti,MichaelBronstein,TemporalGraphNetworksforDeepLearningonDynamicGraphs32
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyContrastiveLearning:TGAT-CL
oMotivation:Noderepresentationprocessisingeneral“smooth”.
oMethod:Contrastthesamenoderepresentationovertime.
Q(tx,ty)=S(Itx-tyl)
[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs33
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyContrastiveLearning:TGAT-CL
oMotivation:Noderepresentationprocessisingeneral“smooth”.
oMethod:Contrastthesamenoderepresentationovertime.
oChallenge:Biasinnegativeexamplesampling.
sim(x,y)=x'yS(tx,ty)=s(Itx-tyl)
oContrastiveLoss
[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs34
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyContrastiveLearning:TGAT-CL
oMotivation:Noderepresentationprocessisingeneral“smooth”.
oMethod:Contrastthesamenoderepresentationovertime.
oChallenge:Biasinnegativeexamplesampling.
oDebiasedContrastiveLoss:
tt=p(c(x')=c(x))
[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs35
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyContrastiveLearning:TGAT-CL
oMotivation:DynamicnodeclassificationperformanceinaverageAUCanddynamiclinkpredictionperformanceinaverageprecision.
[1]ShengTian,RuofanWu,LeileiShi,LiangZhu,TaoXiong,Self-supervisedRepresentationLearningonDynamicGraphs36
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyContrastiveLearning:DySubC
oMotivation:Nodevs.subgraphrepresentations;temporalvs.staticrepresentations.
oMethod:Contrastbetweenapositivesubgraphsample,atemporalnegativesample,andastructuralnegativesample.
Readout:
[1]Ke-JiaChen,LinsongLiu,LinpuJiang,JingqiangChen,Self-SupervisedDynamicGraphRepresentationLearningviaTemporalSubgraphContrast37
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyContrastiveLearning:DySubC
oMotivation:Nodevs.subgraphrepresentations;temporalvs.staticrepresentations.
oMethod:Contrastbetweenapositivesubgraphsample,atemporalnegativesample,andastructuralnegativesample.
TrainingLoss:
L=L1+LZ
[1]Ke-JiaChen,LinsongLiu,LinpuJiang,JingqiangChen,Self-SupervisedDynamicGraphRepresentationLearningviaTemporalSubgraphContrast38
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyContrastiveLearning:DySubC
oExperiments:LinkpredictionintermsofaverageAUCscoreandAccuracy.
[1]Ke-JiaChen,LinsongLiu,LinpuJiang,JingqiangChen,Self-SupervisedDynamicGraphRepresentationLearningviaTemporalSubgraphContrast39
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyMultiviewConsistency:DyG2Vec
oMotivation:Embeddingsshouldbeconsistentundergraphperturbations.
oNewGraphEncoder:Accordingtoablationstudy,thesubgraphencoderisundirectedandnon-causal.
[1]MohammadAlomrani,MahdiBiparva,YingxueZhang,MarkCoates,DyG2Vec:EfficientRepresentationLearningforDynamicGraphs40
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyMultiviewConsistency:DyG2Vec
oMotivation:Embeddingsshouldbeconsistentundergraphaugmentations.
oMethod:Useedgedropoutandedgefeaturemaskingtoproducedifferent“views”,anduseregularization-basedSSLlossfunction
41
+viciz)+ciz'l
[1]MohammadAlomrani,MahdiBiparva,YingxueZhang,MarkCoates,DyG2Vec:EfficientRepresentationLearningforDynamicGraphs
[2]AdrienBardes,JeanPonce,YannLeCun,VICReg:Variance-Invariance-CovarianceRegularizationforSelf-SupervisedLearning
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
SSLbyMultiviewConsistency:DyG2Vec
oExperiments:LinkpredictionintermsofaverageAUCscoreandAccuracy.
[1]MohammadAlomrani,MahdiBiparva,YingxueZhang,MarkCoates,DyG2Vec:EfficientRepresentationLearningforDynamicGraphs42
43
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Data-EfficientTGNNCheckpoint
Self-SupervisedLearning
oIntroduction&Background
oReconstruction
oContrastiveLearning
oMultiviewApproach
Q&A
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
ScopeofThisTutorial
EfficientTGNN
PartII
Data-EfficientTGNN
PartIII
Resource-EfficientTGNN
Self-SupervisedLearning
TrainingAcceleration
InferenceAcceleration
Weakly-SupervisedLearning
Few-ShotLearning
DistributedTrainingAcceleration
44
45
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Weakly-SupervisedLearningonTemporalGraphs
•Introduction&Background
•Weak-SupervisionwithLimitedInformation
•Weak-SupervisiononSparseTemporalGraph
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Introduction–Weakly-SupervisedLearning
oLearninguseful(orbetter)representationsusinglimitedlabeledornoisydata.
oInherentstructureandtemporaldynamicsofthegraphitselfarestillimportant.
oChallenge1:Effectivelyexploitweakinformationinthetrainingprocess.
oChallenge2:Learningrepresentationsondynamicandnoisygraphs.
[1]Leftimageisfrom
/watch?v=WQb6h19PrJA
[2]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs
46
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Weak-SupervisiononLimitedLabeledData:D2PT
oMotivation:DesignauniversalandeffectiveGNNforgraphlearningwithweakinformation(GLWI).Disclaimer:Thisworkisforstaticgraphs.
oMethod:ExecuteeffectiveinformationpropagationinGNNs.
[1]YixinLiu,KaizeDing,JianlingWang,VincentLee,HuanLiu,ShiruiPan,LearningStrongGraphNeuralNetworkswithWeakInformation47
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Weak-SupervisiononLimitedLabeledData:D2PT
oMotivation:DesignauniversalandeffectiveGNNforgraphlearningwithweakinformation(GLWI).Disclaimer:Thisworkisforstaticgraphs.
oMethod:ExecuteeffectiveinformationpropagationinGNNs.
[1]YixinLiu,KaizeDing,JianlingWang,VincentLee,HuanLiu,ShiruiPan,LearningStrongGraphNeuralNetworkswithWeakInformation48
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Weak-SupervisiononLimitedLabeledData:D2PT
oExperiments:ClassificationaccuracyinextremeGLWIscenario.
[1]YixinLiu,KaizeDing,JianlingWang,VincentLee,HuanLiu,ShiruiPan,LearningStrongGraphNeuralNetworkswithWeakInformation49
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Weak-SupervisiononSparseTemporalGraph:GSNOP
oObjective:Addressthesituationwherethereisnotenoughhistoricaldata.
oMotivation:Missinglinksarecommon.Howtolearnbetterrepresentationonsparsegraphsandpreventoverfitting.
[1]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs50
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Weak-SupervisiononSparseTemporalGraph:GSNOP
oMethod:Treatthelinkpredictionasadynamic-changingstochasticprocessandemployneuralprocess.
[1]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs51
PartI-IntroductionPartII-Data-EfficientTGNNPartIII-Resource-EfficientTGNNPartIV-Discussion&Future
Weak-SupervisiononSparseTemporalGraph:GSNOP
oMethod:Treatthelinkpredictionasadynamic-changingstochasticprocessandemployneuralprocess.
[1]LinhaoLuo,GholamrezaHaffari,ShiruiPan,GraphSequentialNeuralODEProcessforLinkPredictiononDynamicandSparseGraphs52
PartI-Introduction
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职美术教育(教学方法)试题及答案
- 2025年高职(农产品加工与质量检测)农产品质量检测试题及答案
- 2025年大学大三(无人机植保技术)无人机农业植保作业规划综合测试题及答案
- 2025年中职市场营销(销售技巧)试题及答案
- 2025年高职第一学年(学前教育)幼儿行为观察与分析试题及答案
- 2025年高职药学(药品调剂技术)试题及答案
- 2026年商场管理(商户服务管理)试题及答案
- 2025年高职计算机应用(办公软件应用)试题及答案
- 2025年高职数字媒体艺术设计(媒体应用)试题及答案
- 2025年高职机场电气维护(电气维护基础)试题及答案
- 小学四年级数学判断题100道(含答案)
- 2025年国家开放大学高层建筑施工复习题库及答案
- 最诱人的酒水招商方案
- 2025年企业环境、社会和治理(ESG)风险管理研究报告
- 2025-2026学年华东师大版(2024)初中体育与健康八年级(全一册)教学设计(附目录)
- 江苏省2025年普通高中学业水平合格性考试化学试卷(含答案)
- 消防电气安全培训资料课件
- 垃圾填埋场安全管理制度
- 铁塔安全管理制度
- 安全生产工作内容包括哪些
- 教科版 九年级 全册 物理《11.1 能量守恒定律 11.2 能量转化的方向性和效率》课件
评论
0/150
提交评论