版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省丽水、湖州、衢州市数学高一上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知均为上连续不断的曲线,根据下表能判断方程有实数解的区间是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.2.函数的图象的横坐标和纵坐标同时扩大为原来的3倍,再将图象向右平移3个单位长度,所得图象的函数解析式为A. B.C. D.3.已知函数为偶函数,则A.2 B.C. D.4.已知函数则的值为()A. B.0C.1 D.25.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)6.当时,在同一平面直角坐标系中,函数与的图象可能为A. B.C. D.7.函数的值域为()A. B.C. D.8.设函数的定义域为R,满足,且当时,.若对任意,都有,则m的最大值是()A. B.C. D.9.设,给出下列四个结论:①;②;③;④.其中所有的正确结论的序号是A.①② B.②③C.①②③ D.②③④10.已知向量,满足,,且与的夹角为,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是________.12.若函数在上单调递增,则的取值范围是__________13.若函数的图象与的图象关于对称,则_________.14.已知实数x,y满足条件,则的最大值___________.15.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______16.函数的图象一定过定点,则点的坐标是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若,求值18.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.19.已知函数,且求函数的定义域;求满足实数x的取值范围20.已知,,其中(1)若是的充分条件,求实数的取值范围;(2)是否存在,使得是的必要条件?若存在,求出的值;若不存在,请说明理由21.已知函数的图像如图所示.(1)求函数的解析式;(2)当时,求函数的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据函数零点的存在性定理可以求解.【详解】由表可知,,,令,则均为上连续不断的曲线,所以在上连续不断的曲线,所以,,;所以函数有零点的区间为,即方程有实数解的区间是.故选:C.2、D【解析】函数的图像的横坐标和纵坐标同时扩大为原来的3倍,所得图像的解析式为,再向右平移3个单位长度,所得图像的解析式为,选D.3、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】将代入分段函数解析式即可求解.【详解】解:因为,所以,又,所以,故选:C.5、C【解析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.6、C【解析】当时,单调递增,单调递减故选7、D【解析】根据分段函数的解析式,结合基本初等函数的单调,分别求得两段上函数的值域,进而求得函数的值域.【详解】当时,单调递减,此时函数的值域为;当时,在上单调递增,在上单调递减,此时函数的最大值为,最小值为,此时值域为,综上可得,函数值域为.故选:D.8、A【解析】分别求得,,,,,,,时,的最小值,作出的简图,因为,解不等式可得所求范围【详解】解:因为,所以,当时,的最小值为;当时,,,由知,,所以此时,其最小值为;同理,当,时,,其最小值为;当,时,的最小值为;作出如简图,因为,要使,则有解得或,要使对任意,都有,则实数的取值范围是故选:A9、B【解析】因为,所以①为增函数,故=1,故错误②函数为减函数,故,所以正确③函数为增函数,故,故,故正确④函数为增函数,,故,故错误点睛:结合指数函数、对数函数、幂函数单调性可以逐一分析得出四个结论的真假性.10、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:,则这个球的表面积是:故答案为:【点睛】本题考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力12、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题13、【解析】求出的反函数即得【详解】因为函数的图象与的图象关于对称,所以是的反函数,的值域是,由得,即,所以故答案为:14、【解析】利用几何意义,设,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,即可求解.【详解】由题意作出如下图形:令,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,当直线与圆相切时,在直角三角形OAB中,,∴,∴.故答案为:15、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题16、【解析】令,得,再求出即可得解.【详解】令,得,,所以点的坐标是.故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故的值为.18、(1);(2),【解析】(1)设的公差为,则由已知条件得,化简得解得故通项公式,即(2)由(1)得.设的公比为,则,从而故的前项和19、(1);(2)见解析.【解析】由题意可得,,解不等式可求;由已知可得,结合a的范围,进行分类讨论求解x的范围【详解】(1)由题意可得,,解可得,,函数的定义域为,由,可得,时,,解可得,,时,,解可得,【点睛】本题主要考查了对数函数的定义域及利用对数函数单调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题20、(1)(2)不存在,理由见解析【解析】(1)解不等式,由充分条件定义得出实数的取值范围;(2)由是的必要条件得出不等关系,结合作出判断.【小问1详解】由得,故有由得,即若p是q的充分条件,则成立,即得.【小问2详解】因为,所以或若是q的必要条件,则成立,则或,显然这两个不等式均与矛盾,故不存在满足条件的m21、(1);(2)最大值,最小值为-1.【解析】(1)由图可知,,可得,再将点代入得,结合,可得的值,即可求出函数的解析式;(2)根据函数的周期,可求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值,结合三角函数图象,即可求出函数的最大值和最小值.试题解析:(1)由图可知:,则∴,将点代入得,,∴,,即,∵∴∴函数的解析式为.(2)∵函数的周期是∴求时函数的最大值和最小值就是转化为求函数在区间上的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校语文教师工作计划例文(三篇)
- 2024年小学安全教育计划范例(二篇)
- 2024年土建工程师岗位的工作职责说明例文(七篇)
- 2024年学校公务用车管理制度模版(三篇)
- 2024年小学教研活动总结标准范本(二篇)
- 2024年小学图书借阅制度模版(五篇)
- 2024年固定资产借款合同范本(二篇)
- 2024年单位年终工作总结(四篇)
- 2024年安全生产工作总结简单版(四篇)
- 2024年工程预算员工作职责(四篇)
- 三星堆课件完整版
- 化工原理12.液液萃取12概念题
- “智慧云”教育平台在初中地理教学中的应用研究
- 金融支付清算系统术语大全(中英文对照)
- GA 634-2006消防员隔热防护服
- 公寓de全人物攻略本为个人爱好而制成如需转载注明信息
- 儿童中医药健康管理(中医调养服务)课件
- xx学校国家义务教育质量监测实施方案
- 证券投资学-课件-人大吴晓求
- 档案管理基础知识培训课件
- 科普百科知识课件
评论
0/150
提交评论