版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省六校2025届高一上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值为()A. B.C. D.2.下列四组函数中,表示同一个函数的一组是()A.,B.,C.,D.,3.如图,在平面直角坐标系中,角的始边为轴的非负半轴,终边与单位圆的交点为,将绕坐标原点逆时针旋转至,过点作轴的垂线,垂足为.记线段的长为,则函数的图象大致是A. B.C. D.4.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:第一档水量为240立方米/户年及以下部分;第二档水量为240立方米/户年以上至360立方米/户年部分(含360立方米/户年);第三档水量为360立方米/户年以上部分.家庭常住人口在4人(不含4人)以上的多人口户,凭户口簿,其水量按每增加一人各档水量递增50立方米/年确定.第一档用水价格为2.1元/立方米;第二档用水价格为3.2元/立方米;第三档用水价格为6.3元/立方米.小明家中共有6口人,去年整年用水花费了1602元,则小明家去年整年的用水量为().A.474立方米 B.482立方米C.520立方米 D.540立方米5.已知全集,集合,,则()A. B.C D.6.过点和,圆心在轴上的圆的方程为A. B.C D.7.设,则()A. B.C. D.8.在中,如果,,,则此三角形有()A.无解 B.一解C.两解 D.无穷多解9.下列四个选项中正确的是()A B.C. D.10.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数二、填空题:本大题共6小题,每小题5分,共30分。11.已知不等式的解集是__________.12.已知函数是定义在上的奇函数,若时,,则时,__________13.总体由编号为,,,,的个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第行的第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为__________14.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.15.已知函数,,那么函数图象与函数的图象的交点共有__________个16.已知圆心为,且被直线截得的弦长为,则圆的方程为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知奇函数和偶函数满足(1)求和的解析式;(2)存在,,使得成立,求实数a的取值范围18.已知集合,.(1)当时,求,;(2)若,且“”是“”的充分不必要条件,求实数的取值范围.19.如图,在正方体中,、分别为、的中点,与交于点.求证:(1);(2)平面平面.20.已知函数(I)求的值(II)求的最小正周期及单调递增区间.21.已知圆的方程为:(1)求圆的圆心所在直线方程一般式;(2)若直线被圆截得弦长为,试求实数的值;(3)已知定点,且点是圆上两动点,当可取得最大值为时,求满足条件的实数的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由诱导公式可得,故选B.2、B【解析】根据相等函数的判定方法,逐项判断,即可得出结果.【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.3、B【解析】,所以选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.4、D【解析】根据题意,建立水费与用水量的函数关系式,即可求解.【详解】设小明家去年整年用水量为x,水费为y.若时,则;若时,则;若时,则.令,解得:故选:D5、C【解析】根据集合补集和交集运算方法计算即可.【详解】表示整数集Z里面去掉这四个整数后构成的集合,∴.故选:C.6、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.7、C【解析】先由补集的概念得到,再由并集的概念得到结果即可【详解】根据题意得,则故选:C8、A【解析】利用余弦定理,结合一元二次方程根的判别式进行求解即可.【详解】由余弦定理可知:,该一元二次方程根的判别式,所以该一元二次方程没有实数根,故选:A9、D【解析】根据集合与集合关系及元素与集合的关系判断即可;【详解】解:对于A:,故A错误;对于B:,故B错误;对于C:,故C错误;对于D:,故D正确;故选:D10、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:12、【解析】函数是定义在上的奇函数,当时,当时,则,,故答案为.13、【解析】根据随机数表,依次进行选择即可得到结论.【详解】按照随机数表的读法所得样本编号依次为23,21,15,可知第3个个体的编号为15.故答案为:15.14、或(答案不唯一)【解析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【点睛】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.15、8【解析】在同一坐标系中,分别画出函数,及函数的图像,如图所示:由图可知,两个函数的图象共有8个交点故答案为8点睛:解决函数与方程问题的基本思想就是数形结合思想和等价转化思想,运用函数图象来研究函数零点或方程解的个数,在画函数图象时,切忌随手一画,可利用零点存在定理,结合函数图象的性质,如单调性,奇偶性,将问题简化.16、【解析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=25三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)利用奇偶性得到方程组,求解和的解析式;(2)在第一问的基础上,问题转化为在上有解,分类讨论,结合对勾函数单调性求解出的最值,进而求出实数a的取值范围.【小问1详解】因为奇函数和偶函数满足①,所以②;联立①②得:,;【小问2详解】变形为,因为,所以,所以,当时,在上有解,符合要求;令,由对勾函数可知,当时,在上单调递减,在上单调递增,,要想上有解,只需,解得:,所以;若且,在上单调递增,要想上有解,只需,解得:,所以;综上:实数a的取值范围为18、(1),或;(2)【解析】(1)当时,求出集合,,由此能求出,;(2)推导出,的真子集,求出,,列出不等式组,能求出实数的取值范围【小问1详解】或,当时,,,或;【小问2详解】若,且“”是“”的充分不必要条件,,的真子集,,,,解得实数的取值范围是19、(1)证明见解析(2)证明见解析【解析】(1)证明出四边形为平行四边形,可证得结论成立;(2)证明出平面,平面,利用面面平行的判定定理可证得结论成立.【小问1详解】证明:在正方体中,且,因为、分别为、的中点,则且,所以,四边形为平行四边形,则.【小问2详解】证明:因为四边形为正方形,,则为的中点,因为为中点,则,平面,平面,所以,平面,因为,平面,平面,所以,平面,因为,因此,平面平面.20、(I)2;(II)的最小正周期是,.【解析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值(Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间【详解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,则f()=﹣2sin()=2,(Ⅱ)因为所以的最小正周期是由正弦函数的性质得,解得,所以,的单调递增区间是【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题21、(1);(2)或;(3).【解析】(1)配方得圆的标准方程,可得圆心坐标满足,消去可得圆心所在直线方程;(2)由弦长、半径结合勾股定理求出圆心到直线的距离,再由点到直线距离公式求得圆心到直线的距离,两者
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 监控改造施工方案
- 就业服务专项实施方案
- 人行道铺装工程施工方案
- 2023年周口鹿邑县人民医院招聘笔试真题
- 2023年台州教师招聘台州市教育局直属学校教师招聘考试真题
- 古井镇中心小学举行讲述我的教育故事活动方案
- 2023年金华教师招聘金东区教育系统届普通招聘编制教师考试真题
- 2023年广州市花都区招聘基层公共就业创业服务人员笔试真题
- 2023年阿坝州卫健委考核招聘紧缺卫生专业人员笔试真题
- 大讨论活动实施方案
- 老城历史核心片区控制性详细规划
- 《疾病与人类健康》
- 水泥混凝土地面工程施工组织设计方案
- 十五章昆虫的循环系统
- NB/T 10717-2021矿山压力监测系统通用技术条件
- GB/T 35686-2017火炸药危险环境用电气设备及安装
- GB/T 10454-2000集装袋
- GB 31644-2018食品安全国家标准复合调味料
- FZ/T 73020-2019针织休闲服装
- 交工技术文件编制规定
- 沙盘游戏心理治疗培训课件
评论
0/150
提交评论