上海市同洲模范学校2025届高三数学第一学期期末综合测试试题含解析_第1页
上海市同洲模范学校2025届高三数学第一学期期末综合测试试题含解析_第2页
上海市同洲模范学校2025届高三数学第一学期期末综合测试试题含解析_第3页
上海市同洲模范学校2025届高三数学第一学期期末综合测试试题含解析_第4页
上海市同洲模范学校2025届高三数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市同洲模范学校2025届高三数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.2.已知函数,若,使得,则实数的取值范围是()A. B.C. D.3.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;4.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为()A. B. C. D.5.下列命题中,真命题的个数为()①命题“若,则”的否命题;②命题“若,则或”;③命题“若,则直线与直线平行”的逆命题.A.0 B.1 C.2 D.36.已知抛物线的焦点为,为抛物线上一点,,当周长最小时,所在直线的斜率为()A. B. C. D.7.若双曲线的离心率为,则双曲线的焦距为()A. B. C.6 D.88.如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是()A.甲得分的平均数比乙大 B.甲得分的极差比乙大C.甲得分的方差比乙小 D.甲得分的中位数和乙相等9.在正项等比数列{an}中,a5-a1=15,a4-a2=6,则a3=()A.2 B.4 C. D.810.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.11.若复数在复平面内对应的点在第二象限,则实数的取值范围是()A. B. C. D.12.已知非零向量满足,若夹角的余弦值为,且,则实数的值为()A. B. C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N*,则S10=_____.14.在直角三角形中,为直角,,点在线段上,且,若,则的正切值为_____.15.已知平面向量,,且,则向量与的夹角的大小为________.16.已知全集为R,集合,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.18.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624(Ⅰ)若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关?是否合格性别不合格合格总计男生女生总计(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;(Ⅲ)某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在(Ⅱ)的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.19.(12分)已知椭圆的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.(1)求椭圆的方程;(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.20.(12分)已知点,且,满足条件的点的轨迹为曲线.(1)求曲线的方程;(2)是否存在过点的直线,直线与曲线相交于两点,直线与轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.21.(12分)已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.(1)求椭圆方程;(2)若直线与椭圆交于另一点,且,求点的坐标.22.(10分)已知函数.(1)求的单调区间;(2)讨论零点的个数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

列出循环的每一步,可得出输出的的值.【详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.2、C【解析】试题分析:由题意知,当时,由,当且仅当时,即等号是成立,所以函数的最小值为,当时,为单调递增函数,所以,又因为,使得,即在的最小值不小于在上的最小值,即,解得,故选C.考点:函数的综合问题.【方法点晴】本题主要考查了函数的综合问题,其中解答中涉及到基本不等式求最值、函数的单调性及其应用、全称命题与存在命题的应用等知识点的综合考查,试题思维量大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,其中解答中转化为在的最小值不小于在上的最小值是解答的关键.3、A【解析】

要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.4、B【解析】

因为时针经过2小时相当于转了一圈的,且按顺时针转所形成的角为负角,综合以上即可得到本题答案.【详解】因为时针旋转一周为12小时,转过的角度为,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为.故选:B【点睛】本题主要考查正负角的定义以及弧度制,属于基础题.5、C【解析】

否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【详解】①的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;③的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假.判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.6、A【解析】

本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可.【详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A.【点睛】本道题考查了抛物线的基本性质,难度中等.7、A【解析】

依题意可得,再根据离心率求出,即可求出,从而得解;【详解】解:∵双曲线的离心率为,所以,∴,∴,双曲线的焦距为.故选:A【点睛】本题考查双曲线的简单几何性质,属于基础题.8、B【解析】

由平均数、方差公式和极差、中位数概念,可得所求结论.【详解】对于甲,;对于乙,,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确.故选:.【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】

根据题意得到,,解得答案.【详解】,,解得或(舍去).故.故选:.【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.10、D【解析】

如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.11、B【解析】

复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题.12、D【解析】

根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、55【解析】

由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,,当时,由,可得,两式相减,可得,整理得,,即,∴数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.14、3【解析】

在直角三角形中设,,,利用两角差的正切公式求解.【详解】设,,则,故.故答案为:3【点睛】此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.15、【解析】

由,解得,进而求出,即可得出结果.【详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为.都答案为:.【点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题.16、【解析】

先化简集合A,再求A∪B得解.【详解】由题得A={0,1},所以A∪B={-1,0,1}.故答案为{-1,0,1}【点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ)能,或.【解析】试题分析:(1)设直线,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;(2)第一步由(Ⅰ)得的方程为.设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.试题解析:解:(1)设直线,,,.∴由得,∴,.∴直线的斜率,即.即直线的斜率与的斜率的乘积为定值.(2)四边形能为平行四边形.∵直线过点,∴不过原点且与有两个交点的充要条件是,由(Ⅰ)得的方程为.设点的横坐标为.∴由得,即将点的坐标代入直线的方程得,因此.四边形为平行四边形当且仅当线段与线段互相平分,即∴.解得,.∵,,,∴当的斜率为或时,四边形为平行四边形.考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即,分别用方程联立求两个坐标,最后求斜率.18、(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)不需要调整安全教育方案.【解析】

(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:(Ⅰ)由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为:是否合格性别不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(Ⅱ)“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为,.的分布列为:20151050所以.(Ⅲ)由(Ⅱ)知:.故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.19、(1).(2)为定值.过程见解析.【解析】分析:(1)焦距说明,用点差法可得=.这样可解得,得椭圆方程;(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.详解:(1)由题意可知,设,代入椭圆可得:,两式相减并整理可得,,即.又因为,,代入上式可得,.又,所以,故椭圆的方程为.(2)由题意可知,,当为长轴时,为短半轴,此时;否则,可设直线的方程为,联立,消可得,,则有:,所以设直线方程为,联立,根据对称性,不妨得,所以.故,综上所述,为定值.点睛:设直线与椭圆相交于两点,的中点为,则有,证明方法是点差法:即把点坐标代入椭圆方程得,,两式相减,结合斜率公式可得.20、(1)(2)存在,或.【解析】

(1)由得看成到两定点的和为定值,满足椭圆定义,用定义可解曲线的方程.(2)先讨论斜率不存在情况是否符合题意,当直线的斜率存在时,设直线点斜式方程,由,可得,再直线与椭圆联解,利用根的判别式得到关于的一元二次方程求解.【详解】解:设,由,,可得,即为,由,可得的轨迹是以为焦点,且的椭圆,由,可得,可得曲线的方程为;假设存在过点的直线l符合题意.当直线的斜率不存在,设方程为,可得为短轴的两个端点,不成立;当直线的斜率存在时,设方程为,由,可得,即,可得,化为,由可得,由在椭圆内,可得直线与椭圆相交,,则化为,即为,解得,所以存在直线符合题意,且方程为或.【点睛】本题考查求轨迹方程及直线与圆锥曲线位置关系问题.(1)定义法求轨迹方程的思路:应用定义法求轨迹方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解;(2)解决是否存在直线的问题时,可依据条件寻找

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论