版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省西畴县第二中学数学高二上期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.2.下列椭圆中,焦点坐标是的是()A. B.C. D.3.如图在中,,,在内作射线与边交于点,则使得的概率是()A. B.C. D.4.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.5.已知是抛物线上的点,F是抛物线C的焦点,若,则()A1011 B.2020C.2021 D.20226.倾斜角为45°,在y轴上的截距为2022的直线方程是()A. B.C. D.7.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为()A. B.C. D.8.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.9.圆与直线的位置关系为()A.相切 B.相离C.相交 D.无法确定10.若是双曲线的左右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为,若,则该双曲线的离心率为()A. B.C. D.11.如图,正四棱柱是由四个棱长为1的小正方体组成的,是它的一条侧棱,是它的上底面上其余的八个点,则集合的元素个数()A.1 B.2C.4 D.812.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线:,,是其左右焦点.圆:,点为双曲线右支上的动点,点为圆上的动点,则的最小值是________.14.设是椭圆上一点,分别是椭圆的左、右焦点,若,则的大小_____.15.已知,,,…,为抛物线:上的点,为抛物线的焦点.在等比数列中,,,,…,.则的横坐标为__________16.已知抛物线:,斜率为且过点的直线与交于,两点,且,其中为坐标原点(1)求抛物线的方程;(2)设点,记直线,的斜率分别为,,证明:为定值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值18.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.19.(12分)双曲线的离心率为,虚轴的长为4.(1)求的值及双曲线的渐近线方程;(2)直线与双曲线相交于互异两点,求的取值范围.20.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和21.(12分)已知椭圆的左、右焦点分别为,,离心率为,过左焦点的直线l与椭圆C交于A,B两点,的周长为8(1)求椭圆C的标准方程;(2)如图,,是椭圆C的短轴端点,P是椭圆C上异于点,的动点,点Q满足,,求证与的面积之比为定值22.(10分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A2、B【解析】根据给定条件逐一分析各选项中的椭圆焦点即可判断作答.【详解】对于A,椭圆的焦点在x轴上,A不是;对于B,椭圆,即,焦点在y轴上,半焦距,其焦点为,B是;对于C,椭圆,即,焦点在y轴上,半焦距,其焦点为,C不是;对于D,椭圆,即,焦点在y轴上,半焦距,其焦点为,D不是.故选:B3、C【解析】由题意可得,根据三角形中“大边对大角,小边对小角”的性质,将转化为求的概率,又因为,,从而可得的概率【详解】解:在中,,,所以,即,要使得,则,又因为,,则的概率是故选:C【点睛】本题考查几何概型及其计算方法的知识,属于基础题4、B【解析】根据空间向量基本定理求解【详解】由已知故选:B5、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C6、A【解析】根据直线斜率与倾斜角的关系,结合直线斜截式方程进行求解即可.【详解】因为直线的倾斜角为45°,所以该直线的斜率为,又因为该直线在y轴上的截距为2022,所以该直线的方程为:,故选:A7、C【解析】由题设且,应用不等式求的范围,即可确定项数.【详解】由题设,且,所以,可得且.所以此数列的项数为.故选:C8、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A9、C【解析】先计算出直线恒过定点,而点在圆内,所以圆与直线相交.【详解】直线可化为,所以恒过定点.把代入,有:,所以在圆内,所以圆与直线的位置关系为相交.故选:C10、D【解析】根据已知条件,找出,的齐次关系式即可得到双曲线的离心率.【详解】由题意得,,,在中,,因,故,在,由余弦定理得,即,计算得,故.故选:D.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合转化为a,c的齐次式,然后等式(不等式)两边分别除以a或转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)11、A【解析】用空间直角坐标系看正四棱柱,根据向量数量积进行计算即可.【详解】建立空间直角坐标系,为原点,正四棱柱的三个边的方向分别为轴、轴和看轴,如右图示,,设,则AB所以集合,元素个数为1.故选:A.12、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用双曲线定义,将的最小值问题转化为的最小值问题,然后结合图形可解.【详解】由题设知,,,,圆的半径由点为双曲线右支上的动点知∴∴.故答案为:14、【解析】,,利用椭圆的定义、结合余弦定理、已知条件,可得,解得,从而可得结果【详解】椭圆,可得,设,,可得,化简可得:,,故答案为【点睛】本题主要考查椭圆的定义以及余弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.15、【解析】利用在抛物线上可求得,结合等比数列的公比可求得,利用抛物线的焦半径公式即可求得结果.【详解】在抛物线上,,解得:,抛物线;数列为等比数列,又,,公比,,即,解得:,即的横坐标为.故答案为:.16、(1)(2)为定值6【解析】(1)由题意可知:将直线方程代入抛物线方程,由韦达定理可知:,,,,求得p的值,即可求得抛物线E的方程;(2)由直线的斜率公式可知:,,,代入,,即可得到:.试题解析:(1)直线的方程为,联立方程组得,设,,所以,,又,所以,从而抛物线的方程为(2)因为,,所以,,因此,又,,所以,即为定值点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点在负半轴可得的范围;(Ⅱ)求导数,由的正负确定单调性,极值得最值【详解】命题意图本题主要考查导数在函数问题中的应用解析(Ⅰ)由题可知,,故可得的图象在点处的切线方程为令,可得由题意可得,即,解得,即的取值范围为(Ⅱ)当时,,易知在上单调递增又,当时,,此时单调递减,当时,,此时单调递增,无最大值【点睛】关键点点睛:本题考查用导数的几何意义,考查用导数求函数的的最值.解题关键是求出导函数,由的正负确定单调性,得函数的极值,从而可得最值18、(1);(2).【解析】解不等式求得为真、为真分别对应的解集;(1)由为真可得全真,两解集取交集可得结果;(2)由和的真假性可得一真一假,则分为真假和假真两种情况求得解集.【小问1详解】若为真,则,即,即,所以或,若为真,则,所以,因为为真命题,所以均为真命题.所以实数的取值范围是.【小问2详解】若为假命题,为真命题,则一真一假,若真假,则,解得或,若假真,则,解得,综上所述,实数的取值范围是.19、(1),,双曲线的渐近线方程为和;(2).【解析】(1)根据双曲线的离心率公式,结合虚轴长的定义进行求解即可;(2)将直线方程与双曲线方程联立,利用方程解的个数进行求解即可.【小问1详解】因为双曲线的离心率为,所以有ca而该双曲线的虚轴的长为4,所以,所以,因此双曲线的浙近线方程为:y=±x⇒x-y=0或;【小问2详解】由(1)可知:,,所以该双曲线的标准方程为:,与直线联立得:,因为直线与双曲线相交于互异两点,所以有:且,所以的取值范围为:.20、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以21、(1)(2)证明见解析【解析】(1)根据周长为8,求得a,再根据离心率求解;(2)方法一:设,,得到直线和直线的方程,联立求得Q的横坐标,根据在椭圆上,得到,然后代入Q的横坐标求解;方法二:设直线,的斜率分别为k,,点,,直线的方程为,与椭圆方程联立,求得点P横坐标,再由的直线方程联立,得到P,Q的横坐标的关系求解.【小问1详解】解:∵的周长为8,∴,即,∵离心率,∴,,∴椭圆C的标准方程为【小问2详解】方法一:设,则直线斜率,∵,∴直线斜率,∴直线的方程为:,同理直线的方程为:,联立上面两直线方程,消去y,得,∵在椭圆上,∴,即,∴,∴所以与的面积之比为定值4方法二:设直线,的斜率分别为k,,点,,则直线的方程为,∵,∴直线的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学校体育工作计划例文(三篇)
- 2024年安检部部长岗位责任制范文(二篇)
- 2024年单间房屋租赁合同参考范文(二篇)
- 2024年宅基地转让合同常用版(二篇)
- 2024年学前班班务工作计划范文(二篇)
- 2024年小学四年级心理健康教育计划范本(四篇)
- 2024年基本公共卫生服务监督管理制度(二篇)
- 2024年售后服务合同样本(二篇)
- 2024年地测防治水部职责制度(四篇)
- 2024年学校安全工作十项制度(三篇)
- 钢琴调律专业申报表(含人才需求调研报告)
- 中国电信:视联网云化技术白皮书2024
- 信息系统安全等级保护(一级)基本要求
- 2024-2030年中国医药级聚乙二醇行业市场竞争格局及投资前景展望报告
- 公司质量与品控管理制度
- 第17课《孤独之旅》学历案-统编版语文九年级上册
- DL∕T 618-2022 气体绝缘金属封闭开关设备现场交接试验规程
- 河北省石家庄2023-2024学年八年级上学期期中数学试题(有答案)
- 强村公司重大事项民主决策实施办法
- 2024民法典知识竞赛题库(含答案)
- JavaWeb程序设计-知到答案、智慧树答案
评论
0/150
提交评论