版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省华南师大附中2025届高一数学第一学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平行线与之间的距离等于()A. B.C. D.2.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,那么的值是()A. B.C. D.3.已知直三棱柱的顶点都在球上,且,,,则此直三棱柱的外接球的表面积是()A. B.C. D.4.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.65.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,06.电影《长津湖》中,炮兵雷公牺牲的一幕看哭全网,他的原型是济南英雄孔庆三.因为前沿观察所距敌方阵地较远,需要派出侦察兵利用观测仪器标定目标,再经过测量和计算指挥火炮实施射击.为了提高测量和计算的精度,军事上通常使用密位制来度量角度,将一个圆周分为6000等份,每一等份的弧所对的圆心角叫做1密位.已知我方迫击炮连在占领阵地后,测得敌人两地堡之间的距离是54米,两地堡到我方迫击炮阵地的距离均是1800米,则我炮兵战士在摧毁敌方一个地堡后,为了快速准确地摧毁敌方另一个地堡,需要立即将迫击炮转动的角度()注:(ⅰ)当扇形的圆心角小于200密位时,扇形的弦长和弧长近似相等;(ⅱ)取等于3进行计算A.30密位 B.60密位C.90密位 D.180密位7.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.8.函数图像大致为()A. B.C. D.9.已知,则函数()A. B.C. D.10.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.12.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________13.漏斗作为中国传统器具而存在于日常生活之中,某漏斗有盖的三视图如图所示,其中俯视图为正方形,则该漏斗的容积为不考虑漏斗的厚度______,若该漏斗存在外接球,则______.14.计算_________.15.已知,则的最大值为_______16.已知函数,,若关于x的方程()恰好有6个不同的实数根,则实数λ的取值范围为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知tanα<0,(1)若求的值;(2)若求tanα的值.18.已知函数(1)判断并说明函数的奇偶性;(2)若关于的不等式恒成立,求实数的取值范围19.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.20.设非空集合P是一元一次方程的解集.若,,满足,,求的值.21.已知集合,(1)当时,求以及;(2)若,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,故选2、A【解析】根据三角函数的定义计算可得结果.【详解】因为,,所以,所以.故选:A3、C【解析】设点为外接圆的圆心,根据,得到是等边三角形,求得外接圆的半径r,再根据直三棱柱的顶点都在球上,由求得,直三棱柱的外接球的半径即可.【详解】如图所示:设点为外接圆的圆心,因为,所以,又,所以等边三角形,所以,又直三棱柱的顶点都在球上,所以外接球的半径为,所以直三棱柱的外接球的表面积是,故选:C4、A【解析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A5、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性6、A【解析】求出1密位对应的弧度,进而求出转过的密位.【详解】有题意得:1密位=,因为圆心角小于200密位,扇形的弦长和弧长近似相等,所以,因为,所以迫击炮转动的角度为30密位.故选:A7、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A8、B【解析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B9、A【解析】根据,令,则,代入求解.【详解】因为已知,令,则,则,所以,‘故选:A10、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【点睛】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.12、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用13、①.②.0.5【解析】先将三视图还原几何体,然后利用长方体和锥体的体积公式求解容积即可;设该漏斗外接球的半径为,设球心为,利用,列式求解的值即可.【详解】由题中的三视图可得,原几何体如图所示,其中,,正四棱锥的高为,,,所以该漏斗的容积为;正视图为该几何体的轴截面,设该漏斗外接球的半径为,设球心为,则,因为,又,所以,整理可得,解得,所以该漏斗存在外接球,则故答案为:①;②.14、1【解析】,故答案为115、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:16、【解析】令,则方程转化为,可知可能有个不同解,二次函数可能有个不同解,由恰好有6个不同的实数根,可得有2个不同的实数根,有3个不同的实数根,则,然后根据,,分3种情况讨论即可得答案.【详解】解:令,则方程转化为,画出的图象,如图可知可能有个不同解,二次函数可能有个不同解,因为恰好有6个不同的实数根,所以有2个不同的实数根,有3个不同的实数根,则,因为,解得,,解得,所以,,每个方程有且仅有两个不相等的实数解,所以由,可得,即,解得;由,可得,即,解得;由,可得,即,而在上恒成立,综上,实数λ的取值范围为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】(1)利用同角三角函数的基本关系求得的值,可得的值,再利用诱导公式求得要求式子的值(2)利用同角三角函数的基本关系求得,由此求得的值【详解】(1),,为第四象限角,,,(2),,,或【点睛】本题主要考查同角三角函数的基本关系,诱导公式,属于基础题18、(1)为奇函数(2)【解析】(1)利用函数的奇偶性判断即可;(2)由(1)知为奇函数且单调递增,将不等式恒成立分离参数,利用基本不等式解得即可.【详解】(1)函数的定义域为,,所以为奇函数.(2)由(1)知奇函数且定义域为,易证在上单调递增,所以不等式恒成立,转化,即对恒成立,所以对恒成立,即,因,则,所以,即,所以,故实数的取值范围为.【点睛】本题考查函数奇偶性的定义,以及利用奇偶性,单调性解不等式恒成立问题,属于中档题.19、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查直线和圆的位置关系,结合圆的几何性质处理相交相切,过某点的直线在设其方程的时候一定注意讨论斜率是否存在,这是一个易错点,对逻辑思维能力要求较高,当然也可以考虑直线与二次曲线的常规解法.20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年员工个人劳动合同经典版(三篇)
- 2024年处方管理办法实施细则例文(四篇)
- 2024年安全检查制度例文(三篇)
- 2024年培训学校管理制度范例(三篇)
- 2024年学校工会工作总结范例(四篇)
- 2024年幼儿园后勤春季工作计划模版(二篇)
- 2024年土建工程师工作总结经典版(八篇)
- 2024年学校控烟考评奖惩制度范文(三篇)
- 2024年工程机械租赁合同格式版(二篇)
- 2024年小学年级组工作计划(四篇)
- 篮球规则以及裁判手势图
- 2022年《离骚》繁体版
- ECMO护士核心能力量表模板
- 2021年湖北省新高考地理真题(附参考答案)
- 园林绿化工程质量管理体系及保证措施
- 双师型教师培养课件
- 《旅居养老服务指南》
- 药品生产企业药物警戒计划
- DB∕T29-156-2021 天津市居住区绿地设计标准
- 消防监督检查要点
- 《民法典》全文学习PPT
评论
0/150
提交评论