版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省长沙市高一数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列的前项的和为()A. B.C. D.2.若不等式的解集为,那么不等式的解集为()A. B.或C. D.或3.长方体中,,,则直线与平面ABCD所成角的大小A. B.C. D.4.函数的值域为()A.(0,+∞) B.(-∞,1)C.(1,+∞) D.(0,1)5.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.6.已知直二面角,点,,为垂足,,,为垂足.若,则到平面的距离等于A. B.C. D.17.若且,则函数的图象一定过点()A. B.C. D.8.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱9.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的A.4倍 B.3倍C.倍 D.2倍10.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定二、填空题:本大题共6小题,每小题5分,共30分。11.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______12.已知,则函数的最大值为__________.13.不等式的解集是______14.某扇形的圆心角为2弧度,半径为,则该扇形的面积为___________15.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______16.已知向量,,若,,,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,(1)若从甲校和乙校报名的教师中各选1名,求选出的两名教师性别相同的概率(2)若从报名的6名教师中任选2名,求选出的两名教师来自同一学校的概率18.(1)已知,,试用、表示;(2)化简求值:19.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围20.年,全世界范围内都受到“新冠”疫情的影响,了解某些细菌、病毒的生存条件、繁殖习性等对于预防疾病的传播、保护环境有极其重要的意义.某科研团队在培养基中放入一定量某种细菌进行研究.经过分钟菌落的覆盖面积为,经过分钟覆盖面积为,后期其蔓延速度越来越快;现菌落的覆盖面积(单位:)与经过时间(单位:)的关系有两个函数模型与可供选择.(参考数据:,,,,,,)(1)试判断哪个函数模型更合适,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多久培养基中菌落面积能超过?(结果保留到整数)21.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据分组求和可得结果.【详解】,故选:C2、C【解析】根据题意,直接求解即可.【详解】根据题意,由,得,因为不等式的解集为,所以由,知,解得,故不等式的解集为.故选:C.3、B【解析】连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【点睛】本题考查了线面角的求法,考查了数学运算能力.4、D【解析】将函数解析式变形为,再根据指数函数的值域可得结果.【详解】,因为,所以,所以,所以函数的值域为.故选:D5、D【解析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【点睛】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.6、C【解析】如图,在平面内过点作于点因为为直二面角,,所以,从而可得.又因为,所以面,故的长度就是点到平面的距离在中,因为,所以因为,所以.则在中,因为,所以.因为,所以,故选C7、C【解析】令求出定点的横坐标,即得解.【详解】解:令.当时,,所以函数的图象过点.故选:C.8、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.9、D【解析】由题意,求出圆锥的底面面积,侧面面积,即可得到比值【详解】圆锥的轴截面是正三角形,设底面半径为r,则它的底面积为πr2;圆锥的侧面积为:2rπ•2r=2πr2;圆锥的侧面积是底面积的2倍故选D【点睛】本题是基础题,考查圆锥的特征,底面面积,侧面积的求法,考查计算能力10、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.12、【解析】换元,,化简得到二次函数,根据二次函数性质得到最值.【详解】设,,则,,故当,即时,函数有最大值为.故答案为:.【点睛】本题考查了指数型函数的最值,意在考查学生的计算能力,换元是解题的关键.13、【解析】先利用指数函数的单调性得,再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题14、16【解析】利用扇形的面积S,即可求得结论【详解】∵扇形的半径为4cm,圆心角为2弧度,∴扇形的面积S16cm2,故答案为:1615、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.16、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用古典概型概率公式可知(2)从报名的6名教师中任选2名,求选出的两名教师来自同一学校的情况为,则18、(1);(2)【解析】(1)利用换底公式及对数运算公式化简;(2)利用指数运算公式化简求值.【详解】(1);(2).19、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【点睛】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别.20、(1)应选模型为,理由见解析;(2)【解析】(1)根据增长速度可知应选,根据已知数据可构造方程组求得,进而得到函数模型;(2)根据函数模型可直接构造不等式,结合参考数据计算可得,由此可得结论.小问1详解】的增长速度越来越快,的增长速度越来越慢,应选模型为;则,解得:,,又,函数模型为;【小问2详解】由题意得:,即,,,,至少经过培养基中菌落面积能超过.21、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用换元法,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年员工个人劳动合同经典版(三篇)
- 2024年处方管理办法实施细则例文(四篇)
- 2024年安全检查制度例文(三篇)
- 2024年培训学校管理制度范例(三篇)
- 2024年学校工会工作总结范例(四篇)
- 2024年幼儿园后勤春季工作计划模版(二篇)
- 2024年土建工程师工作总结经典版(八篇)
- 2024年学校控烟考评奖惩制度范文(三篇)
- 2024年工程机械租赁合同格式版(二篇)
- 2024年小学年级组工作计划(四篇)
- 江苏省镇江市第二中学2023-2024学年高二上学期期中考试数学试卷(无答案)
- 2024中煤电力限公司面向中煤集团内部招聘15人高频难、易错点500题模拟试题附带答案详解
- 统编版(2024新版)七年级上册历史第二单元 夏商周时期:奴隶制王朝的更替和向封建社会的过渡 单元复习课件
- 安徽省江南十校2025届高一数学第一学期期末经典试题含解析
- 3.2 世界的地形(教学设计)七年级地理上册同步高效备课课件(人教版2024)
- 2024南京航空航天大学科学技术研究院招聘历年高频500题难、易错点模拟试题附带答案详解
- 2024上海烟草集团北京卷烟厂限公司招聘31人高频500题难、易错点模拟试题附带答案详解
- 2024年上半年教师资格证《初中音乐》真题及答案
- 第13课《纪念白求恩》课件2024-2025学年统编版语文七年级上册
- 2024-2030年中国合成革行业发展分析及发展趋势预测与投资风险研究报告
- 2024年部编版初中明德教育集团七年级期中考试(学生版)
评论
0/150
提交评论