2025届湖南省重点中学数学高一上期末调研试题含解析_第1页
2025届湖南省重点中学数学高一上期末调研试题含解析_第2页
2025届湖南省重点中学数学高一上期末调研试题含解析_第3页
2025届湖南省重点中学数学高一上期末调研试题含解析_第4页
2025届湖南省重点中学数学高一上期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省重点中学数学高一上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或2.已知某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.3.若,,则()A. B.C. D.4.如图是正方体或四面体,分别是所在棱的中点,则这四个点不共面的一个图是()A. B.C. D.5.设,则的值为()A.0 B.1C.2 D.36.函数的图像恒过定点,则的坐标是()A. B.C. D.7.函数的定义域为()A.B.且C.且D.8.总体由编号为01,02,...,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.169.为了给地球减负,提高资源利用率,垃圾分类在全国渐成风尚,假设2021年两市全年用于垃圾分类的资金均为万元.在此基础上,市每年投入的资金比上一年增长20%,市每年投入的资金比上一年增长50%,则市用于垃圾分类的资金开始超过市的两倍的年份是()(参考数据:)A.2022年 B.2025届C.2025届 D.2025年10.已知函数的上单调递减,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.筒车亦称为“水转筒车”,一种以流水为动力,取水灌田的工具,筒车发明于隋而盛于唐,距今已有1000多年的历史.如图,假设在水流量稳定的情况下,一个半径为3米的筒车按逆时针方向做每6分钟转一圈的匀速圆周运动,筒车的轴心O距离水面BC的高度为1.5米,设筒车上的某个盛水筒P的切始位置为点D(水面与筒车右侧的交点),从此处开始计时,t分钟时,该盛水筒距水面距离为,则___________12.函数的单调递减区间为___________.13.已知向量不共线,,若,则___14.已知[x]表示不超过x的最大整数,定义函数f(x)=x-[x].有下列结论:①函数的图象是一条直线;②函数f(x)的值域为[0,1);③方程f(x)=有无数个解;④函数是R上的增函数.其中正确的是____.(填序号)15.函数最小正周期是________________16.三条直线两两相交,它们可以确定的平面有______个.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求不等式的解集;(2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域18.已知(1)求;(2)若,且,求19.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点20.已知函数,.(1)求函数图象的对称轴的方程;(2)当时,求函数的值域;(3)设,存在集合,当且仅当实数,且在时,不等式恒成立.若在(2)的条件下,恒有(其中),求实数的取值范围.21.已知,,,为坐标原点.(1)若,求的值;(2)若,且,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程,故选:D﹒2、B【解析】由三视图可知,该几何体是由圆柱切掉四分之一所得,故体积为.故选B.3、A【解析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误.【详解】由,则,A正确;,B错误;,D错误.当时,,C错误;故选:A.4、D【解析】A,B,C选项都有,所以四点共面,D选项四点不共面.故选:D.5、C【解析】根据分段函数,结合指数,对数运算计算即可得答案.【详解】解:由于,所以.故选:C.【点睛】本题考查对数运算,指数运算,分段函数求函数值,考查运算能力,是基础题.6、D【解析】利用指数函数的性质即可得出结果.【详解】由指数函数恒过定点,所以函数的图像恒过定点.故选:D7、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C8、D【解析】利用随机数表从给定位置开始依次取两个数字,根据与20的大小关系可得第5个个体的编号.【详解】从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,小于或等于20的5个编号分别为:07,03,13,20,16,故第5个个体编号为16.故选:D.【点睛】本题考查随机数表抽样,此类问题理解抽样规则是关键,本题属于容易题.9、D【解析】设经过年后,市投入资金为万元,市投入资金为万元,即可表示出、,由题意可得,利用对数的运算性质解出的取值范围即可【详解】解:设经过年后,市投入资金为万元,则,市投入资金为万元,则由题意可得,即,即,即,即所以,所以,即2025年该市用于垃圾分类的资金开始超过市的两倍;故选:D10、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据图象及所给条件确定振幅、周期、,再根据时求即可得解.【详解】由题意知,,,,当时,,,即,,所以,故答案为:12、【解析】利用对数型复合函数性质求解即可.【详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:13、【解析】由,将表示为的数乘,求出参数【详解】因为向量不共线,,且,所以,即,解得【点睛】向量与共线,当且仅当有唯一一个实数,使得14、②③##③②【解析】画出的图象,即可判断四个选项的正误.【详解】画出函数的图象,如图所示,可以看出函数的图象不是一条直线,故A错误;函数f(x)的值域为,故②正确;方程有无数个解,③正确;函数是分段函数,且函数不是R上的增函数,故④错误.故答案为:②③15、【解析】根据三角函数周期计算公式得出结果.【详解】函数的最小正周期是故答案为:16、1或3【解析】利用平面的基本性质及推论即可求出.【详解】设三条直线为,不妨设直线,故直线与确定一个平面,(1)若直线在平面内,则直线确定一个平面;(2)若直线不在平面内,则直线确定三个平面;故答案为:1或3;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2).【解析】(1)利用辅助角公式化简函数的解析式,根据正弦函数的性质可求得答案;(2)根据函数的图象变换得到函数的解析式,再由正弦函数的性质可求得的值域.【小问1详解】解:因为,∴,即,所以,即,,∴的解集为,【小问2详解】解:由题可知,当时,,所以,所以,所以在区间上值域为18、(1)(2)【解析】(1)根据已知条件求出tanα,将要求的式子构造成关于正余弦的齐次式,将弦化为切即可求值;(2)根据角的范围和的正负确定的范围,求出sin(),根据即可求解.【小问1详解】,;【小问2详解】,,,又,.19、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.20、(1);(2);(3).【解析】(1)利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的对称性得解;(2)令,换元,化函数为的二次函数,求出,由此可值域;(3)由题意利用分离参数法、换元法、基本不等式先求出集合,根据(2)中范围得出的范围,再由可得的范围【详解】解:(1)令,得所以函数图象的对称轴方程为:(2)由(1)知,,当时,,∴,,即令,则,,由得,∴当时,有最小值,当时,有最大值1,所以当时,函数的值域为(3)当,不等式恒成立,因为时,,,所以,令,则,所以又,当且仅当即时取等号而,所以,即,所以又由(2)知,,当时,,所以,要使恒成立,只须使,故的取值范围是【点睛】关键点点睛:本题考查两角和的正弦公式,三角函数的对称性,换元法求三角函数的值域,考查不等式恒成立问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论