安徽省池州市青阳县第一中学2025届数学高一上期末质量检测试题含解析_第1页
安徽省池州市青阳县第一中学2025届数学高一上期末质量检测试题含解析_第2页
安徽省池州市青阳县第一中学2025届数学高一上期末质量检测试题含解析_第3页
安徽省池州市青阳县第一中学2025届数学高一上期末质量检测试题含解析_第4页
安徽省池州市青阳县第一中学2025届数学高一上期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省池州市青阳县第一中学2025届数学高一上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,直线与单位圆相切于点,射线从出发,绕着点逆时针旋转,在旋转的过程中,记(),所经过的单位圆内区域(阴影部分)的面积为,记,则下列选项判断正确的是A.当时,B.对任意,且,都有C.对任意,都有D.对任意,都有2.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.3.如图,一根绝对刚性且长度不变、质量可忽略不计线,一端固定,另一端悬挂一个沙漏让沙漏在偏离平衡位置一定角度后在重力作用下在铅垂面内做周期摆动.设线长为,沙漏摆动时离开平衡位置的位移(单位:cm)与时间(单位:s)的函数关系是,.若,要使沙漏摆动的最小正周期是,则线长约为()A.5m B.C. D.20m4.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.5.设,,,则,,的大小关系是()A. B.C. D.6.如图,已知水平放置的按斜二测画法得到的直观图为,若,,则的面积为()A.12 B.C.6 D.37.在中,“角为锐角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.三棱锥的外接球为球,球的直径是,且,都是边长为1的等边三角形,则三棱锥的体积是A. B.C. D.9.已知实数满足,则函数的零点所在的区间是()A. B.C. D.10.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为_______________.12.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.13.写出一个同时具有下列性质①②的函数______.(注:不是常数函数)①;②.14.已知某扇形的半径为,面积为,那么该扇形的弧长为________.15._____16.若将函数的图象向左平移个单位长度,得到函数的图象,则的最小值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l1过点A(1,0),B(3,a-1),直线l2过点M(1,2),N(a+2,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值18.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕点按逆时针方向旋转角(),得到,若点和点都恰好落在曲线()上,求的值.19.已知,其中为奇函数,为偶函数.(1)求与的解析式;(2)判断函数在其定义域上的单调性(不需证明);(3)若不等式恒成立,求实数的取值范围.20.已知函数.(1)若函数的定义域为,求集合;(2)若集合,求.21.如图1,直角梯形ABCD中,,,.如图2,将图1中沿AC折起,使得点D在平面ABC上的正投影G在内部.点E为AB的中点.连接DB,DE,三棱锥D-ABC的体积为.对于图2的几何体(1)求证:;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】对于,当,故错误;对于,由题可知对于任意,为增函数,所以与的正负相同,则,故错误;对于,由,得对于任意,都有;对于,当时,,故错误.故选CD对任意,都有2、B【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.3、A【解析】根据余弦函数的周期公式计算,即可求得答案.【详解】因为函数最小正周期是,故,即,解得(m),故选:A4、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题5、A【解析】根据指数函数与对数函数的图像与性质,结合中间量法,即可比较大小.【详解】由指数函数与对数函数的图像与性质可知综上可知,大小关系为故选:A【点睛】本题考查了指数函数与对数函数的图像与性质的应用,中间值法是比较大小常用方法,属于基础题.6、C【解析】由直观图,确定原图形中线段长度和边关系后可求得面积【详解】由直观图,知,,,所以三角形面积为故选:C7、D【解析】分析条件与结论的关系,根据充分条件和必要条件的定义确定正确选项.【详解】若角为锐角,不妨取,则,所以“角为锐角”是“”的不充分条件,由,可得,所以角不一定为锐角,所以“角为锐角”是“”的不必要条件,所以“角为锐角”是“”的既不充分也不必要条件,故选:D.8、B【解析】试题分析:取BC中点M,则有,所以三棱锥的体积是,选B.考点:三棱锥体积【思想点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解9、B【解析】由已知可得,结合零点存在定理可判断零点所在区间.【详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.10、C【解析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出,再结合二次函数的内容求解.【详解】由得,,故当时,有最小值,当时,有最大值.故答案为:.12、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.13、【解析】根据函数值以及函数的周期性进行列举即可【详解】由知函数的周期是,则满足条件,,满足条件,故答案为:(答案不唯一)14、【解析】根据扇形面积公式可求得答案.【详解】设该扇形的弧长为,由扇形的面积,可得,解得.故答案.【点睛】本题考查了扇形面积公式的应用,考查了学生的计算能力,属于基础题.15、【解析】利用根式性质与对数运算进行化简.【详解】,故答案为:616、;【解析】因为函数的图象向左平移个单位长度,得到,所以的最小值为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】由两点式求出l1的斜率(1)再由两点求斜率的到l2的斜率,由斜率相等求得a的值;(2)分l1的斜率为0和不为0讨论,当l1的斜率为0时,由M,N的横坐标相等求a得值;不为0时由两直线的斜率乘积等于-1得答案【详解】(1),即,解得(2),即,解得.【点睛】本题考查了直线的一般式方程与两直线平行、垂直的关系,考查了分类讨论的数学思想方法,是基础题18、(1)(2)【解析】(1)根据为等腰直角三角形可求解(2)根据三角函数定义分别得到、的坐标,再代入中可求解【小问1详解】由题意可知周期,所以,,为等腰直角三角形,所以.【小问2详解】由(1)可得,所以,,所以,点,都落在曲线()上,所以可得,,,可得,,由,得,(),所以.19、(1),;(2)函数在其定义域上为减函数;(3).【解析】(1)由与可建立有关、的方程组,可得解出与的解析式;(2)化简函数解析式,根据函数的解析式可直接判断函数的单调性;(3)将所求不等式变形为,根据函数的定义域、单调性可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】(1)由于函数为奇函数,为偶函数,,,即,所以,,解得,.由,可得,所以,,;(2)函数的定义域为,,所以,函数在其定义域上为减函数;(3)由于函数为定义域上的奇函数,且为减函数,由,可得,由题意可得,解得.因此,实数的取值范围是.【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下:(1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域;(3)求解关于自变量的不等式,从而求解出不等式的解集.20、(1);(2).【解析】⑴满足函数有意义的条件为,求出结果即可;⑵根据已知条件及并集的运算法则可得结果;解析:(1)要使函数有意义,则要,得.所以.(2)∵,∴21、(1)证明见解析;(2).【解析】(1)取AC的中点F,连接DF,CE,EF,证明AC⊥平面DEF即可.(2)以G为坐标原点,建立空间直角坐标系,利用向量的方法求解线面角.【小问1详解】取AC的中点F,连接DF,CE,EF,则△DAC,△EAC均为等腰直角三角形∴AC⊥DF,AC⊥EF,∵DF∩EF=F,∴AC⊥平面DEF,又DE⊂平面DEF,∴DE⊥AC【小问2详解】连接GA,GC,∵DG⊥平面ABC,而GA⊂平面ABC,GC⊂平面ABC,∴DG⊥GA,DG⊥GC,又DA=DC,∴GA=GC,∴G在AC的垂直平分线上,又EA=EC,∴E在AC的垂直平分线上,∴EG垂直平分AC,又F为AC的中点,∴E,F,G共线∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论