2025届云南省曲靖市富源县二中数学高二上期末复习检测模拟试题含解析_第1页
2025届云南省曲靖市富源县二中数学高二上期末复习检测模拟试题含解析_第2页
2025届云南省曲靖市富源县二中数学高二上期末复习检测模拟试题含解析_第3页
2025届云南省曲靖市富源县二中数学高二上期末复习检测模拟试题含解析_第4页
2025届云南省曲靖市富源县二中数学高二上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省曲靖市富源县二中数学高二上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.2.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.33.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.4.已知p:,q:,那么p是q的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件5.设双曲线()的焦距为12,则()A.1 B.2C.3 D.46.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.7.已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4 B.5C.6 D.78.已知平面直角坐标系内一动点P,满足圆上存在一点Q使得,则所有满足条件的点P构成图形的面积为()A. B.C. D.9.已知函数满足,则曲线在点处的切线方程为()A. B.C. D.10.已知点在椭圆上,与关于原点对称,,交轴于点,为坐标原点,,则椭圆的离心率为()A. B.C. D.11.中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中5块五仁月饼、6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率是()A B.C. D.12.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,二、填空题:本题共4小题,每小题5分,共20分。13.一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.14.已知双曲线:的右焦点为,过点向双曲线的一条渐近线引垂线,垂足为,交另一条渐近线于,若,则双曲线的渐近线方程为__________15.若,,,四点中恰有三点在椭圆上,则椭圆C的方程为________.16.已知函数,则曲线在点处的切线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.18.(12分)已知椭圆的左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程19.(12分)已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由20.(12分)如图,在四棱锥中,底面是菱形,平面,,,分别为,的中点(1)证明:平面;(2)证明:平面21.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值22.(10分)等差数列的前n项和为,已知(1)求的通项公式;(2)若,求n的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.2、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D3、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A4、C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.5、B【解析】根据可得关于的方程,解方程即可得答案.【详解】因为可化为,所以,则.故选:B.【点睛】本题考查已知双曲线的焦距求参数的值,考查函数与方程思想,考查运算求解能力,属于基础题.6、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.7、C【解析】根据题干条件得到相似,进而得到,求出点P到准线l的距离.【详解】由题意得:,准线方程为,因为,所以,故点P到准线l的距离为.故选:C8、D【解析】先找临界情况当PQ与圆C相切时,,进而可得满足条件的点P形成的图形为大圆(包括内部),即求.【详解】当PQ与圆C相切时,,这种情况为临界情况,当P往外时无法找到点Q使,当P往里时,可以找到Q使,故满足条件的点P形成的图形为大圆(包括内部),如图,由圆,可知圆心,半径为1,则大圆的半径为,∴所有满足条件的点P构成图形的面积为.故选:D.【点睛】关键点点睛:本题的关键是找出临界情况时点所满足的条件,进而即可得到动点满足条件的图形,问题即可解决.9、A【解析】求出函数的导数,利用导数的定义求解,然后求解切线的斜率即可【详解】解:函数,可得,,可得,即,所以,可得,解得,所以,所以曲线在点处的切线方程为故选:A10、B【解析】由,得到,结合,得到,进而求得,得出,结合离心率的定义,即可求解.【详解】设,则,由,可得,所以,因为,可得,又由,两式相减得,即,即,又因为,所以,即又由,所以,解得.故选:B.11、C【解析】分别求出取到3块月饼都是同种月饼和取到3块月饼都是五仁月饼的种数,再根据概率公式即可得解.【详解】解:由题意可得,取到3块月饼都是同种月饼有种情况,取到3块月饼都是五仁月饼有种情况,所以在取到的都是同种月饼的条件下,都是五仁月饼的概率是.故选:C.12、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】点关于轴的对称点为,即反射光线过点,分别讨论反射光线的斜率存在与不存在的情况,进而求解即可【详解】点关于轴的对称点为,(1)设反射光线的斜率为,则反射光线的方程为,即,因为反射光线与圆相切,所以圆心到反射光线的距离,即,解得,所以反射光线方程为:;(2)当不存在时,反射光线,此时,也与圆相切,故答案为:或【点睛】本题考查直线在光学中的应用,考查圆的切线方程14、【解析】由题意得双曲线的右焦点F(c,0),设一渐近线OM的方程为,则另一渐近线ON的方程为.设,∵,∴,∴,解得∴点M的坐标为,又,∴,整理得,∴双曲线的渐近线方程为答案:点睛:(1)已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程就是双曲线的两条渐近线方程(2)求双曲线的渐进线方程的关键是求出的关系,并根据焦点的位置确定出渐近线的形式,并进一步得到其方程15、【解析】由于,关于轴对称,故由题设知C经过,两点,C不经过点,然后求出a,b,即可得到椭圆的方程.【详解】解:由于,关于轴对称,故由题设知经过,两点,所以.又由知,不经过点,所以点在上,所以.因此,故方程为.故答案为:.【点睛】求椭圆的标准方程有两种方法:①定义法:根据椭圆的定义,确定,的值,结合焦点位置可写出椭圆方程②待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出,;若焦点位置不明确,则需要分焦点在轴上和轴上两种情况讨论,也可设椭圆的方程为16、【解析】先求函数的导数,再利用导数的几何意义求函数在处的切线方程.【详解】,,,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,重点考查计算能力,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,利用直线和圆的位置关系列出不等式解出k的取值范围即可.【详解】(1)设圆C的一般式方程为:,令,得,所以,令,得,所以,所以有,所以,①又圆C过点,,所以有,②,③由①②③得,,,所以圆C的一般式方程为,标准方程为;(2)设关于的对称点,所以有,解之得,故点,∴反射光线所在直线过点,设反射光线所在直线方程为:,所以有,所以反射光线所在的直线斜率取值范围为.【点睛】本题考查圆的方程的求法,直线和圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.18、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为.19、(1)(2)存在,,【解析】(1)利用离心率和椭圆所过点列出方程组,求出,求出椭圆方程;(2)假设存在,分切线斜率存在和不存在分类讨论,根据向量数量积为0求出r的值,表达出△AOB的面积,利用基本不等式求出的取值范围,进而求出△AOB面积的取值范围.【小问1详解】因为椭圆C:的离心率,且过点所以解得所以椭圆C的方程为【小问2详解】假设存在⊙O:满足题意,①切线方程l的斜率存在时,设切线方程l:y=kx+m与椭圆方程联立,消去y得,(*)设,,由题意知,(*)有两解所以,即由根与系数的关系可得,所以因为,所以,即化简得,且,O到直线l的距离所以,又,此时,所以满足题意所以存在圆的方程为⊙O:△AOB的面积,又因为当k≠0时当且仅当即时取等号又因为,所以,所以当k=0时,②斜率不存在时,直线与椭圆交于两点或两点易知存在圆的方程为⊙O:且综上,所以【点睛】求解圆锥曲线相关的三角形或四边形面积取值范围问题,需要先设出变量,表达出面积,利用基本不等式或者配方,导函数等求出最值,求出取值范围,特别注意直线斜率存在和不存在的情况,需要分类讨论.20、(1)证明见解析;(2)证明见解析.【解析】(1)取中点,结合三角形中位线性质可证得四边形为平行四边形,由此得到,由线面平行判定定理可证得结论;(2)利用菱形特点和线面垂直的性质可证得,,由线面垂直的判定定理可证得结论.【详解】(1)取中点,连接,分别为中点,,四边形为菱形,为中点,,,四边形为平行四边形,,又平面,平面,平面.(2)连接,四边形为菱形,,为等边三角形,又为中点,,平面,平面,,又平面,,平面.21、(1)证明见解析;(2).【解析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论