版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海浦东新区高二上数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则函数在点处的切线方程为()A. B.C. D.2.经过点且圆心是两直线与的交点的圆的方程为()A. B.C. D.3.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列4.已知:,直线l:,M为直线l上的动点,过点M作的切线MA,MB,切点为A,B,则四边形MACB面积的最小值为()A.1 B.2C. D.45.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.6.若圆与圆有且仅有一条公切线,则()A.-23 B.-3C.-12 D.-137.抛物线有一条重要的性质:平行于抛物线的轴的光线,经过抛物线上的一点反射后经过它的焦点.反之,从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.已知抛物线,从点发出一条平行于x轴的光线,经过抛物线两次反射后,穿过点,则光线从A出发到达B所走过的路程为()A.8 B.10C.12 D.148.,则()A. B.C. D.9.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面10.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.11.已知O为坐标原点,=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A. B.C. D.12.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势二、填空题:本题共4小题,每小题5分,共20分。13.若数列满足,,设,类比课本中推导等比数列前项和公式的方法,可求得______________14.不等式的解集是________.15.命题“任意,”为真命题,则实数a的取值范围是______.16.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块.已知每层圈数相同,共有9圈,则下层比上层多______块石板三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:x2=4y的焦点为F,过F的直线与抛物线C交于A,B两点,点M在抛物线C的准线上,MF⊥AB,S△AFM=λS△BFM(1)当λ=3时,求|AB|的值;(2)当λ∈[]时,求|+|的最大值18.(12分)如图,在四棱锥中,四边形为正方形,已知平面,且,E为中点(1)证明:平面;(2)证明:平面平面19.(12分)已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求:(1)顶点的坐标;(2)直线的方程.20.(12分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围21.(12分)如图,多面体中,平面平面,,四边形为平行四边形.(1)证明:;(2)若,求二面角的余弦值.22.(10分)如图,三棱锥中,,,,,,点是PA的中点,点D是AC的中点,点N在PB上,且.(1)证明:平面CMN;(2)求平面MNC与平面ABC所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C2、B【解析】求出圆心坐标和半径后,直接写出圆的标准方程.【详解】由得,即所求圆的圆心坐标为.由该圆过点,得其半径为1,故圆的方程为.故选:B.【点睛】本题考查了圆的标准方程,属于基础题.3、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.4、B【解析】易知四边形MACB的面积为,然后由最小,根据与直线l:垂直求解.【详解】:化为标准方程为:,由切线长得:,四边形MACB的面积为,若四边形MACB的面积最小,则最小,此时与直线l:垂直,所以,所以四边形MACB面积的最小值,故选:B5、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.6、A【解析】根据两圆有且仅有一条公切线,得到两圆内切,从而可求出结果.【详解】因为圆,圆心为,半径为;圆可化为,圆心为,半径,又圆与圆有且仅有一条公切线,所以两圆内切,因此,即,解得.故选:A.7、C【解析】利用抛物线的定义求解.【详解】如图所示:焦点为,设光线第一次交抛物线于点,第二次交抛物线于点,过焦点F,准线方程为:,作垂直于准线于点,作垂直于准线于点,则,,,,故选:C8、B【解析】求出,然后可得答案.【详解】,所以故选:B9、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D10、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A11、C【解析】设,用表示出,求得的表达式,结合二次函数的性质求得当时,取得最小值,从而求得点的坐标.【详解】设,则=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以当λ=时,取得最小值,此时==,即点Q的坐标为.故选:C12、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、n【解析】先对两边同乘以4,再相加,化简整理即可得出结果.【详解】由①得:②所以①②得:,所以,,故答案为【点睛】本题主要考查类比推理的思想,结合错位相减法思想即可求解,属于基础题型.14、【解析】把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集【详解】不等式得,故,故答案为:.15、【解析】分离常数,将问题转化求函数最值问题.【详解】任意,恒成立恒成立,故只需,记,,易知,所以.故答案为:16、1458【解析】首先由条件可得第圈的石板为,且为等差数列,利用基本量求和,即可求解.【详解】设第圈的石板为,由条件可知数列是等差数列,且上层的第一圈为,且,所以,上层的石板数为,下层的石板数为.所以下层比上层多块石板.故答案为:1458三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由面积之比可得向量之比,设直线AB的方程,与抛物线的方程联立求出两根之和及两根之积,与向量的关系可得的A,B的横坐标的关系联立求出直线AB的斜率,再由抛物线的性质可得焦点弦的值;(2)由(1)的解法类似的求出AB的中点N的坐标,可得直线AB的斜率与λ的关系,再由λ的范围,求出直线AB的斜率的范围,由题意设直线MF的方程,令y=﹣1求出M的横坐标,进而求出|MN|的最大值,而|+|=2||,求出|+|的最大值【小问1详解】当λ=3时,即S△AFM=3S△BFM,由题意可得=3,因为抛物线C:x2=4y的焦点为F(1,0),准线方程为y=﹣1,设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,联立,整理可得:x2﹣4kx﹣4=0,显然,x1+x2=4k①,x1x2=﹣4②,y1+y2=k(x1+x2)+2=4k2+2,由=3,则(﹣x1,1﹣y1)=3(x2,y2﹣1)可得x1=﹣3x2③,①③联立可得x2=﹣2k,x1=6k,代入②中可得﹣12k2=﹣4,解得k2=,由抛物线的性质可得|AB|=y1+y2+2=4×+2=,所以|AB|的值为;【小问2详解】由(1)可得AB中点N(2k,2k2+2),由=λ,则x1=﹣λx2④,同(1)的算法:①②④联立4k2λ=(1﹣λ)2,因为λ∈[],所以4k2=λ+﹣2,令y=λ+,λ∈[],则函数y先减后增,所以λ=2或时,y最大且为2+,此时4k2最大,且为,所以k2的最大值为:,直线MF的方程为:y=﹣x+1,令y=﹣1,可得x=2k,即M(2k,﹣1),因为|+|=2||,而|NM|=|2k2+2+1|=2k2+3≤2×+3=,所以|+|的最大值为18、(1)证明见解析(2)证明见解析【解析】(1)设与交于点,连结,易证,再利用线面平行的判断定理即可证得答案;(2)利用线面垂直的判定定理可得平面,再由面面垂直的判断定理即可.【小问1详解】连接交于,连接因为底面是正方形,所以为中点,因为在中,是的中点,所以,因为平面平面,所以平面【小问2详解】侧棱底面底面,所以,因为底面是正方形,所以,因为与为平面内两条相交直线,所以平面,因为平面,所以平面平面.19、(1);(2).【解析】(1)求出直线的方程,然后联立直线、的方程,即可求得点的坐标;(2)设,可求得线段的中点的坐标,将点的坐标代入直线的方程,可求得的值,可得出点的坐标,进而利用直线的斜率和点斜式可得出直线的方程.【小问1详解】解:,所以,而,则,所以直线的方程为,由,解得,所以顶点的坐标为.【小问2详解】解:因为在直线,所以可设,由为线段的中点,所以,将的坐标代入直线的方程,所以,解得,所以.故,故直线的方程为,即.20、(1)的减区间为,增区间为(2)【解析】(1)利用导数求得的单调区间.(2)利用分离参数法,结合构造函数法以及导数求得的取值范围.【小问1详解】当时,,,所以在区间递减;在区间递增.所以的减区间为,增区间为.【小问2详解】,恒成立.构造函数,,,构造函数,,所以在上递增,,所以在上成立,所以,所以,即的取值范围是.21、(1)证明见解析(2)【解析】(1)先通过平面平面得到,再结合,可得平面,进而可得结论;(2)取的中点,的中点,连接,,以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,求这两个法向量的夹角即可得结果.【详解】解:(1)因为平面平面,交线为,又,所以平面,,又,,则平面,平面,所以,;(2)取的中点,的中点,连接,,则平面,平面;以点坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系如图所示,已知,则,,,,,,则,,设平面的一个法向量,由得令,则,,即;平面的一个法向量为;.所以二面角的余弦值为.【点睛】本题考查线线垂直的证明以及空间向量发求面面角,考查学生计算能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60747-15:2024 RLV EN Semiconductor devices - Part 15: Discrete devices - Isolated power semiconductor devices
- 2024年大学学生会工作总结参考模板(三篇)
- 2024年小学数学教研工作计划(三篇)
- 2024年学校交通安全管理制度(四篇)
- 2024年商铺门面租赁合同标准样本(二篇)
- 2024年大学班主任新学期工作计划(二篇)
- 【《房屋建筑工程施工现场进度及质量管理探究》2800字】
- 【《J信托公司X房地产信托情况及项目风险现状探析》11000字(论文)】
- 2024年学校安全上墙制度样本(二篇)
- 2024年学期工作总结参考范本(二篇)
- 2024-2025学年七年级上学期数学期中模拟试卷(苏科版2024)(含答案解析)
- 人教版八年级历史上册第一学期期中综合测试卷( 2024年秋)
- 2024年连南瑶族自治县绿连林业发展有限公司招聘笔试参考题库附带答案详解
- 科大讯飞促销活动方案
- 医务人员授权、再授权管理办法
- 2022年1月浙江首考英语读后续写精深分析与下水范例
- RSLinx Classic 入门指南
- 普通货物运输公司危险源辨识与评价清单
- 人教版小学语文《搭石》评课稿
- 中央空调多联机施工方案(完整版)
- 走访慰问老干部调查报告
评论
0/150
提交评论