天津市部分区2025届高一数学第一学期期末学业质量监测试题含解析_第1页
天津市部分区2025届高一数学第一学期期末学业质量监测试题含解析_第2页
天津市部分区2025届高一数学第一学期期末学业质量监测试题含解析_第3页
天津市部分区2025届高一数学第一学期期末学业质量监测试题含解析_第4页
天津市部分区2025届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市部分区2025届高一数学第一学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.当生物死后,它体内的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半.2010年考古学家对良渚古城水利系统中一条水坝的建筑材料草裹泥)上提取的草茎遗存进行碳14检测,检测出碳14的残留量约为初始量的,以此推断此水坝建成的年代大概是公元前()(参考数据:,)A.年 B.年C.年 D.年2.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.93.设非零向量、、满足,,则向量、的夹角()A. B.C. D.4.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是A. B.C. D.5.()A. B.C. D.6.已知为等差数列,为的前项和,且,,则公差A. B.C. D.7.在中,角、、的对边分别为、、,已知,,,则A. B.C. D.8.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.9.函数的定义域为()A.R B.C. D.10.下列函数中,周期为的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若在上恒成立,则k的取值范围是______.12.集合,则____________13.正三棱锥中,,则二面角的大小为__________14.对于定义在上的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调递增的;②当时,函数的值域也是,则称是函数的一个“递增黄金区间”.下列函数中存在“递增黄金区间”的是:___________.(填写正确函数的序号)①;②;③;④.15.函数的值域是____.16.若,,则等于_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量的夹角的大小.18.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.19.在平面直角坐标系中,已知角的页点为原点,始边为轴的非负半轴,终边经过点.(1)求的值;(2)求旳值.20.已知,,,.(1)求和的值;(2)求的值.21.已知且,求使不等式恒成立的实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据碳14的半衰期为5730年,即每5730年含量减少一半,设原来的量为,经过年后变成了,即可列出等式求出的值,即可求解.【详解】解:根据题意可设原来的量为,经过年后变成了,即,两边同时取对数,得:,即,,,以此推断此水坝建成的年代大概是公元前年.故选:B.2、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.3、B【解析】根据已知条件,应用向量数量积的运算律可得,由得,即可求出向量、的夹角.【详解】由题意,,即,∵,∴,则,又,∴.故选:B4、A【解析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,BC重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.5、D【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【详解】因为.故选:D.6、A【解析】分析:先根据已知化简即得公差d.详解:由题得4+4+d+4+2d=6,所以d=.故答案为A.点睛:本题主要考查等差数列的前n项和和等差数列的通项,意在考查学生对这些基础知识的掌握水平.7、B【解析】分析:直接利用余弦定理求cosA.详解:由余弦定理得cosA=故答案为B.点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:.8、B【解析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【详解】因为、是正实数,且,则,,因此,.故选:B.9、B【解析】要使函数有意义,则需要满足即可.【详解】要使函数有意义,则需要满足所以的定义域为,故选:B10、C【解析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先参变分离得到在上恒成立,接着分段求出函数的最小值,最后给出k的取值范围即可.【详解】因为在上恒成立,所以在上恒成立,当时,,所以,所以,所以;当时,,所以,所以,所以;综上:k的取值范围为.故答案为:.【点睛】本题是含参数的不等式恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.12、【解析】分别解出集合,,再根据并集的定义计算可得.【详解】∵∴,∵,∴,则,故答案为:【点睛】本题考查指数不等式、对数不等式的解法,并集的运算,属于基础题.13、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以14、②③【解析】由条件可得方程有两个实数解,然后逐一判断即可.【详解】∵在上单调递增,由条件②可知,即方程有两个实数解;∵x+1=x无实数解,∴①不存在“递增黄金区间”;∵的两根为:1和2,不难验证区间[1,2]是函数的一个“递增黄金区间”;在同一坐标系中画出与的图象如下:由图可得方程有两个根,∴③也存在“递增黄金区间”;在同一坐标系中画出与的图象如下:所以没有实根,∴④不存在.故答案为:②③.15、##【解析】由余弦函数的有界性求解即可【详解】因为,所以,所以,故函数的值域为,故答案为:16、【解析】由同角三角函数基本关系求出的值,再由正弦的二倍角公式即可求解.【详解】因为,,所以,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【点睛】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.18、(1)(2)【解析】(1)根据题意可得,从而可求得,再根据正弦函数的性质结合整体思想即可得出答案;(2)求出平移后的函数的解析式,再根据正余弦函数的奇偶性即可得出答案.【小问1详解】解:因为函数的图象相邻两条对称轴之间的距离为,所以,所以,所以,所以,当时,,所以当时,函数取得最小值,当时,函数取得最大值,所以;【小问2详解】解:函数的图象向左平移个单位后,得到函数,因为为偶函数,所以,所以,又因为,所以.19、(1)(2)【解析】(1)根据三角函数的定义可求得的值,再利用诱导公式结合同角的三角函数关系化简可得结果;(2)利用二倍角的余弦公式可直接求得答案.【小问1详解】由角的终边经过点,可得,,故;小问2详解】.20、(1);(2).【解析】(1)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论