版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省忻州巿第一中学高一上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则是A. B.C. D.有限集2.已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()A. B.C. D.3.已知,则()A. B.C.2 D.4.若集合,则()A. B.C. D.5.已知函数,则函数的零点所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)6.设a>0,b>0,化简的结果是()A. B.C. D.-3a7.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个8.下列函数中,图象的一部分如图所示的是()A. B.C. D.9.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,2510.函数()的最大值为()A. B.1C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,那么的表达式是___________.12.不论为何实数,直线恒过定点__________.13.函数在上是x的减函数,则实数a的取值范围是______14.已知为锐角,,,则__________15.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.16.函数y=1-sin2x-2sinx的值域是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值18.如图,四棱锥的底面为矩形,,.(1)证明:平面平面.(2)若,,,求点到平面的距离.19.已知函数(其中)的图象上相邻两个最高点的距离为(Ⅰ)求函数的图象的对称轴;(Ⅱ)若函数在内有两个零点,求的取值范围及的值20.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值21.某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可【详解】由集合S中的函数y=3x>0,得到集合S={y|y>0};由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S故选C【点睛】本题属于求函数值域,考查了交集的求法,属于基础题2、B【解析】先求得扇形的半径,由此求得扇形面积.【详解】依题意,扇形的半径为,所以扇形面积为.故选:B3、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B4、C【解析】根据交集定义即可求出.【详解】因为,所以.故选:C.5、B【解析】先分析函数的单调性,进而结合零点存在定理,可得函数在区间上有一个零点【详解】解:函数在上为增函数,又(1),(2),函数在区间上有一个零点,故选:6、D【解析】由分数指数幂的运算性质可得结果.【详解】因为,,所以.故选:D.7、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键8、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D9、A【解析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A10、C【解析】对函数进行化简,即可求出最值.【详解】,∴当时,取得最大值为3.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先用换元法求出,进而求出的表达式.【详解】,令,则,故,故,故答案为:12、【解析】直线整理可得.令,解得,即直线恒过定点点睛:直线恒过定点问题,一般就是将参数提出来,使得其系数和其他项均为零,即可得定点.13、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.14、【解析】由,都是锐角,得出的范围,由和的值,利用同角三角函数的基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的余弦函数公式化简计算,即得结果【详解】,都是锐角,,又,,,,则故答案为:.15、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题16、[-2,2]【解析】利用正弦函数的值域,二次函数的性质,求得函数f(x)的值域,属于基础题【详解】∵sinx∈[-1,1],∴函数y=1-sin2x-2sinx=-(sinx+1)2+2,故当sinx=1时,函数f(x)取得最小值为-4+2=-2,当sinx=-1时,函数f(x)取得最大值为2,故函数的值域为[-2,2],故答案为[-2,2]【点睛】本题主要考查正弦函数的值域,二次函数的性质,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),(3)最大值为,最小值为【解析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.18、(1)证明见解析;(2).【解析】(1)连接,交于点,连接,证明平面,即可证明出平面平面.(2)用等体积法,即,即可求出答案.【小问1详解】连接,交于点,连接,如图所示,底面为矩形,为,的中点,又,,,,又,平面,平面,平面平面【小问2详解】,,,,在中,,,在中,,在中,,,,,,设点到平面的距离为,由等体积法可知,又平面,为点到平面的距离,,,即点到平面的距离为19、(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由题意,图象上相邻两个最高点的距离为,即周期,可得,即可求解对称轴;(Ⅱ)函数在,内有两个零点,,转化为函数与函数有两个交点,即可求解的范围;在,内有两个零点,是关于对称轴是对称的,即可求解的值【详解】(Ⅰ)∵已知函数(其中)的图象上相邻两个最高点的距离为,∴,故函数.令,得+,故函数的图象的对称轴方程为+,;(Ⅱ)由(Ⅰ)可知函数.∵x∈,∴∈[,]∴-≤≤,要使函数在内有两个零点∴-<m<,且m即m的取值范围是(-,)∪(,)函数在内有两个零点,可得是关于对称轴是对称的,对称轴为=2x-,得x=,在内的对称轴x=或当m∈(-,1)时,可得=,=当m∈(-1,-)时,可得x1+x2=,∴==20、(1)(2)-【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值;⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值【详解】⑴已知、、,所以,,因为,所以化简得,即,因为,所以;⑵由可得,化简得,,所以,所以,综上所述,【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度滴灌带生产线设备更新改造合同
- 04版股权转让合同(含稀释与并购)
- 2024年度产品研发与技术转让合同:科研机构与企业之间的合同3篇
- 2024年度耐高温滤袋材料生产合同
- 2024年度碳排放权交易与环保服务合同
- 2024年度棉花田土壤改良服务协议
- 《家电回收》课件
- 财务报表课件教学
- 2024年度股权转让合同违约责任及违约金支付
- 2024年度旅游服务与接待合同主要条款
- 2023年北京清华附中小升初考试数学真题及答案
- 校园监控维护记录表
- 小学文明礼仪教育中译六年级上册第九课民族礼仪 哈达
- ICF言语嗓音障碍的评估与治疗课件
- 《中国当代文艺思潮》第二章主体论文艺思潮
- Honda-Special-Requirement本田的特殊要求-课件
- 克拉2气田-爆炸事故案例解读课件
- 2021-2022学年高中英语北师大版(2019)选择性必修第二册Units 4-6 全册单词表
- 道格拉斯公司销售数据决策案例分析课件
- 北理c语言上机答案(全)
- 水泵各部分结构及原理介绍课件
评论
0/150
提交评论