版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市新建区第一中学2025届高一数学第一学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,且,则等于()A.100 B.C. D.2.已知函数的部分函数值如下表所示:x10.50.750.6250.56250.6321-0.10650.27760.0897-0.007那么函数的一个零点的近似值(精确度为0.01)为()A.0.55 B.0.57C.0.65 D.0.73.若关于x的方程log12x=m1-mA.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞) D.(-∞,0)∪(1,+∞)4.如果,,那么()A. B.C. D.5.函数为定义在R上的单调函数,则实数m的取值范围是()A. B.C. D.6.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.7.设,,,则,,的大小关系为()A. B.C. D.8.实数满足,则下列关系正确的是A. B.C. D.9.已知,,则的值为A. B.C. D.10.函数(且)与函数在同一坐标系内的图象可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的化简结果为____________12.设a>0且a≠1,函数fx13.函数的最小值为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________15.若命题“是假命题”,则实数的取值范围是___________.16.已知函数,若,则实数的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.18.已知函数是定义在1,1上的奇函数,且.(1)求m,n的值;(2)判断在1,1上的单调性,并用定义证明;(3)设,若对任意的,总存在,使得成立,求实数k的值.19.在三棱柱中,侧棱底面,点是的中点.(1)求证:;(2)求证:;(3)求直线与平面所成的角的正切值.20.设函数,.(1)若方程在区间上有解,求a的取值范围.(2)设,若对任意的,都有,求a的取值范围.21.已知函数.(1)求的最小正周期以及对称轴方程;(2)设函数,求在上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由,得到,再由求解.【详解】因为,所以,则,所以,则,解得,故选:C2、B【解析】根据给定条件直接判断函数的单调性,再结合零点存在性定理判断作答.【详解】函数在R上单调递增,由数表知:,由零点存在性定义知,函数的零点在区间内,所以函数的一个零点的近似值为.故选:B3、A【解析】由题意可得:函数y=log12x∴∴∴实数m的取值范围是(0故选A点睛:本小题考查的是学生对函数最值的应用的知识点的掌握.本题在解答时应该先将函数y=log12x在区间(0,4、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.5、B【解析】由在单调递增可得函数为增函数,保证两个函数分别单调递增,且连接点处左端小于等于右端的函数值即可【详解】由题意,函数为定义在R上的单调函数且在单调递增故在单调递增,即且在处,综上:解得故选:B6、C【解析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C7、D【解析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案.【详解】因为,,,所以.故选:D.8、A【解析】根据指数和对数的运算公式得到【详解】=故A正确.故B不正确;故C,D不正确.故答案为A.【点睛】这个题目考查了指数和对数的公式的互化,以及换底公式的应用,较为简单.9、A【解析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果.【详解】由可知:,由得:本题正确选项:【点睛】本题考查同角三角函数值的求解,关键是能够熟练掌握同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误.10、C【解析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案.【详解】解:当时,增函数,开口向上,对称轴,排除B,D;当时,为减函数,开口向下,对称轴,排除A,故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.二、填空题:本大题共6小题,每小题5分,共30分。11、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.12、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).13、【解析】原函数化为,令,将函数转化为,利用二次函数的性质求解.【详解】由原函数可化为,因为,令,则,,又因为,所以,当时,即时,有最小值.故答案为:14、45°【解析】解:如图,设正方体ABCD-A1B1C1D1的棱长为1,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系,则A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),设面ABC1的法向量为=(x,y,z),∵•=0,•=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),设二面角C1-AB-C的平面角为θ,∴cosθ=|cos<,>|=,∴θ=45°,答案为45°考点:二面角的平面角点评:本题考查二面角的平面角及求法,是基础题.解题时要认真审题,注意向量法的合理运用15、####【解析】等价于,解即得解.【详解】解:因为命题“是假命题”,所以,所以.故答案为:16、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最大值为16米;(2)最小值为平方米.【解析】(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示,利用均值不等式,即得最小值.【详解】(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得.因为矩形草坪的长比宽至少大9米,所以,所以,解得.又,所以.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得(平方米)当且仅当米时,等号成立.所以整个绿化面积的最小值为平方米.18、(1),(2)在上递增,证明见解析(3)【解析】(1)由为1,1上奇函数可得,再结合可求出m,n的值;(2)直接利用单调性的定义判断即可,(3)由题意可得,而,然后分,和三种情况求解的最大值,使其最大值大于等于,解不等式可得结果【小问1详解】依题意函数是定义在上的奇函数,所以,∴,所以,经检验,该函数为奇函数.【小问2详解】在上递增,证明如下:任取,其中,,所以,故在上递增.【小问3详解】由于对任意的,总存在,使得成立,所以.当,恒成立当时,在上递增,,所以.当时,在上递减,,所以.综上所述,19、(1)见解析(2)见解析(3)【解析】【试题分析】(1)依据题设运用线面平行的判定定理进行分析推证;(2)借助题设条件先证明线面垂直,再运用线面垂直的性质定理进行推证;(3)先运用线面角的定义找出线面角,再运用解三角形求其正切值:(1)如图,令分别为的中点,又∵(2)证明:∠⊥在直三棱柱中,⊥又⊥平面,又⊥(3)由(2)得AC⊥平面∴直线是斜线在平面上的射影∴是直线与平面所成的角.在中,∴,即求直线与平面的正切值为.点睛:立体几何是高中数学重点内容之一,也是高考重点考查的考点和热点.这类问题的设置目的是考查空间线面的位置关系及角度距离的计算.求解本题第一问时,直接依据题设运用线面平行的判定定理进行分析推证;求解第二问,充分借助题设条件先证明线面垂直,再运用线面垂直的性质定理从而使得问题获证;求解第三问时,先运用线面角的定义找出线面角,再运用解三角形求其正切值使得问题获解20、(1);(2).【解析】(1),有解,即在上有解,设,对称轴为,只需,解不等式,即可得出结论;(2)根据题意只需,分类讨论去绝对值求出,利用函数单调性求出或取值范围,转化为求关于的不等式,即可求解.【详解】(1)在区间上有解,整理得在区间上有解,设,对称轴为,,解得,所以a的取值范围.是;(2)当,;当,,,设是减函数,且在恒成立,在上是减函数,在处有意义,,对任意的,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年家具订购合同参考范文(三篇)
- 2024年四年级德育工作计划范本(二篇)
- 2024年口腔科工作计划(三篇)
- 2024年实习生工作计划(二篇)
- 2024年学校绿化管理制度例文(三篇)
- 2024年厦门个人租房协议样本(三篇)
- 城市数字公共基础设施标准体系构成
- 2024年小学美术老师的教学工作计划例文(二篇)
- 2024年小学德育工作管理制度(四篇)
- 2024年工作年终总结范文(二篇)
- 2023-2024学年北京市海淀区高二年级上册期中考试化学质量检测模拟试题(含解析)
- 2024年山东青岛城投金融控股集团有限公司招聘笔试参考题库含答案解析
- 民宿合作方案
- 苯妥英锌的合成1(修改)
- 盒马鲜生管理手册
- 高中物理《相互作用》大单元集体备课
- 平面镜成像-说课课件
- 宋代诗人苏轼的艺术心态与文学成就
- 虫害分析分析报告
- 中国的时尚与时尚产业
- 炊事基础理论知识
评论
0/150
提交评论