版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海外国语附属外国语学校2025届数学高一上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且,当且时.已知,若对恒成立,则的取值范围是()A. B.C. D.2.指数函数在R上单调递减,则实数a的取值范围是()A. B.C. D.3.已知条件,条件,则p是q的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.将函数的图象向左平移个单位后得到函数的图象,则下列说法正确的是()A.图象的一条对称轴为 B.在上单调递增C.在上的最大值为1 D.的一个零点为5.已知函数在上是增函数,则实数的取值范围是A. B.C. D.6.命题:“”的否定是()A. B.C. D.7.已知角的终边与单位圆的交点为,则()A. B.C. D.8.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.9.直线的倾斜角为A. B.C. D.10.若函数在单调递增,则实数a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的大小关系是___________________.(用“”连结)12.已知幂函数的图象过点,则此函数的解析式为______13.已知非零向量、满足,,在方向上的投影为,则_______.14.若向量与共线且方向相同,则___________15.函数的最大值是,则实数的取值范围是___________16.函数的单调减区间是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合A={x|},B={x||x-a|<2},其中a>0且a≠1(1)当a=2时,求A∪B及A∩B;(2)若集合C={x|logax<0}且C⊆B,求a的取值范围18.已知函数.(1)求的最小正周期以及对称轴方程;(2)设函数,求在上的值域.19.已知函数是定义在上的奇函数,且.(1)求函数解析式;(2)判断函数在上的单调性,并用定义证明;(3)解关于的不等式:.20.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)21.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.(1)求出游速与其耗氧量单位数之间的函数解析式;(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由奇偶性分析条件可得在上单调递增,所以,进而得,结合角的范围解不等式即可得解.【详解】因为是定义在上的奇函数,所以当且时,根据的任意性,即的任意性可判断在上单调递增,所以,若对恒成立,则,整理得,所以,由,可得,故选:A.【点睛】关键点点睛,本题解题关键是利用,结合变量的任意性,可判断函数的单调性,属于中档题.2、D【解析】由已知条件结合指数函数的性质列不等式求解即可【详解】因为指数函数在R上单调递减,所以,得,所以实数a的取值范围是,故选:D3、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B4、B【解析】对选项A,,即可判断A错误;对选项B,求出的单调区间即可判断B正确;对选项C,求出在的最大值即可判断C错误;对选项D,根据,即可判断D错误.详解】,.对选项A,因为,故A错误;对选项B,因为,.解得,.当时,函数的增区间为,所以在上单调递增,故B正确;对选项C,因为,所以,所以,,,故错误;对选项D,,故D错误.故选:B5、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”
函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反6、C【解析】写出全称命题的否定即可.【详解】“”的否定是:.故选:C.7、A【解析】利用三角函数的定义得出和的值,由此可计算出的值.【详解】由三角函数的定义得,,因此,.故选:A.【点睛】本题考查三角函数的定义,考查计算能力,属于基础题.8、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B9、B【解析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B10、D【解析】根据给定条件利用对数型复合函数单调性列式求解作答.【详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.12、##【解析】设出幂函数,代入点即可求解.【详解】由题意,设,代入点得,解得,则.故答案为:.13、【解析】利用向量数量积的几何意义得出,在等式两边平方可求出的值,然后利用平面向量数量积的运算律可计算出的值.【详解】,在方向上的投影为,,,则,可得,因此,.故答案:.【点睛】本题考查平面向量数量积计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.14、2【解析】向量共线可得坐标分量之间的关系式,从而求得n.【详解】因为向量与共线,所以;由两者方向相同可得.【点睛】本题主要考查共线向量的坐标表示,熟记共线向量的充要条件是求解关键.15、[-1,0]【解析】函数,当时,函数有最大值,又因为,所以,故实数的取值范围是16、##【解析】根据复合函数的单调性“同增异减”,即可求解.【详解】令,根据复合函数单调性可知,内层函数在上单调递减,在上单调递增,外层函数在定义域上单调递增,所以函数#在上单调递减,在上单调递增.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A∪B={x|x>0},A∩B={x|2<x<4};(2){a|1<a≤2},【解析】(1)化简集合A,B,利用并集及交集的概念运算即得;(2)分a>1,0<a<1讨论,利用条件列出不等式即得.【小问1详解】∵A={x|2x>4}={x|x>2},B={x||x-a|<2}={x|a-2<x<a+2},∴当a=2时,B={x|0<x<4},所以A∪B={x|x>0},A∩B={x|2<x<4};【小问2详解】当a>1时,C={x|logax<0}={x|0<x<1},因为C⊆B,所以,解得-1≤a≤2,因为a>1,此时1<a≤2,当0<a<1时,C={x|logax<0}={x|x>1},此时不满足C⊆B,综上,a的取值范围为{a|1<a≤2}18、(1)最小正同期为,对称轴方程为(2)【解析】(1)利用三角函数的恒等变换公式将化为只含有一个三角函数形式,即可求得结果;(2)将展开化简,然后采用整体处理的方法,求得答案.【小问1详解】,所以的最小正同期为.令,得对称轴方程为.【小问2详解】由题意可知,因为,所以,故,所以,故在上的值域为.19、(1);(2)函数在上是增函数,证明见解析;(3).【解析】(1)根据奇函数的定义可求得的值,再结合已知条件可求得实数的值,由此可得出函数的解析式;(2)判断出函数在上是增函数,任取、且,作差,因式分解后判断的符号,即可证得结论成立;(3)由得,根据函数的单调性与定义域可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:因为函数是定义在上的奇函数,则,即,可得,则,所以,,则,因此,.【小问2详解】证明:函数在上是增函数,证明如下:任取、且,则,因为,则,,故,即.因此,函数在上是增函数.【小问3详解】解:因为函数是上的奇函数且为增函数,由得,由已知可得,解得.因此,不等式的解集为.20、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.综上可知日销售金额最大值为1125元,此时.【点睛】本小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省南通市通州高级中学2024-2025学年高二上学期第二次阶段性检测物理试题(含答案)
- 江苏行政职业能力模拟48
- 2022年湖南省湘西州中考数学试卷 (原卷版)
- 浙江公务员面试模拟113
- 可视化教学在小学音乐课堂中的应用
- 2000年新疆公务员面试真题
- 地方公务员辽宁申论80
- 网络服务器搭建、配置与管理-Linux(麒麟欧拉)(微课版)(第5版)课堂实践任务单2-熟练使用Linux基本命令
- 河南行政职业能力测验模拟61
- 湖南行政职业能力模拟122
- 产品复盘报告
- 彩票店创业计划书
- 山西汾西正升煤业有限责任公司90万吨-年矿井兼并重组整合项目(变更)环评可研资料环境影响
- 职业打假人投诉、举报处理规范
- 胎儿脐血流及大脑中动脉监测技术与应用
- 八大浪费培训教材课件
- 系统更换可行性方案
- 烟花爆竹经营与使用的消防安全规范
- 头疗手法培训课件
- 树消防意识 创平安校园课件
- 《毕业论文写作》课件
评论
0/150
提交评论