2025届湘潭市重点中学数学高二上期末学业水平测试试题含解析_第1页
2025届湘潭市重点中学数学高二上期末学业水平测试试题含解析_第2页
2025届湘潭市重点中学数学高二上期末学业水平测试试题含解析_第3页
2025届湘潭市重点中学数学高二上期末学业水平测试试题含解析_第4页
2025届湘潭市重点中学数学高二上期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湘潭市重点中学数学高二上期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在空间四边形中,()A. B.C. D.2.设是可导函数,当,则()A.2 B.C. D.3.已知,则()A. B.C. D.4.若用面积为48的矩形ABCD截某圆锥得到一个椭圆,且该椭圆与矩形ABCD的四边都相切.设椭圆的方程为,则下列满足题意的方程为()A. B.C. D.5.是等差数列,且,,则的值()A. B.C. D.6.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.7.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.8.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有9.已知为等差数列,为其前n项和,,则下列和与公差无关的是()A. B.C. D.10.已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A. B.C. D.11.命题“存在,使得”的否定为()A.存在, B.对任意,C.对任意, D.对任意,12.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”,下列椭圆中是“对偶椭圆”的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列前项和为,且,则_______.14.年月我国成功发射了第一颗人造地球卫星“东方红一号”,这颗卫星的运行轨道是以地心(地球的中心)为一个焦点的椭圆.已知卫星的近地点(离地面最近的点)距地面的高度约为,远地点(离地面最远的点)距地面的高度约为,且地心、近地点、远地点三点在同一直线上,地球半径约为,则卫星运行轨道是上任意两点间的距离的最大值为___________15.如图,已知椭圆E的方程为(a>b>0),A为椭圆的左顶点,B,C在椭圆上,若四边形OABC为平行四边形,且∠OAB=30°,则椭圆的离心率等于________16.已知抛物线的焦点与的右焦点重合,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知某电器市场由甲、乙、丙三家企业占有,其中甲厂产品的市场占有率为40%,乙厂产品的市场占有率为36%,丙厂产品的市场占有率为24%,甲、乙、丙三厂产品的合格率分别为,,(1)现从三家企业的产品中各取一件抽检,求这三件产品中恰有两件合格的概率;(2)现从市场中随机购买一台该电器,则买到的是合格品的概率为多少?18.(12分)已知三点共线,其中是数列中的第n项.(1)求数列的通项;(2)设,求数列的前n项和.19.(12分)已知抛物线C的顶点在坐标原点,焦点在x轴上,点在抛物线C上(1)求抛物线C的方程;(2)过抛物线C焦点F的直线l交抛物线于P,Q两点,若求直线l的方程20.(12分)已知各项均为正数的等比数列{}的前4项和为15,且.(1)求{}的通项公式;(2)若,记数列{}前n项和为,求.21.(12分)(1)已知命题p:;命题q:,若“”为真命题,求x的取值范围(2)设命题p:;命题q:,若是的充分不必要条件,求实数a的取值范围22.(10分)已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且(1)求抛物线的方程;(2)过点作直线交抛物线于两点,设,判断是否为定值?若是,求出该定值;若不是,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.2、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C3、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.4、A【解析】由椭圆与矩形ABCD的四边都相切得到再逐项判断即可.【详解】由于椭圆与矩形ABCD的四边都相切,所以矩形两边长分别为,由矩形面积为48,得,对于选项B,D由于,不符合条件,不正确.对于选项A,,满足题意.对于选项C,不正确.故选:A.5、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B6、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B7、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.8、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C9、C【解析】依题意根据等差数列的通项公式可得,再根据等差数列前项和公式计算可得;【详解】解:因为,所以,即,所以,,,,故选:C10、A【解析】设双曲线的一条渐近线方程为,为的中点,可得,由,可知为的三等分点,用两种方式表示,可得关于的方程组,结合即可得到双曲线的离心率.【详解】设双曲线的一条渐近线方程为,为的中点,可得,由到渐近线的距离为,所以,又,所以,因为,所以,整理可得:,即,所以,可得,所以,所以双曲线的离心率为,故选:A.11、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.12、A【解析】由题意可得,所给的椭圆中的,的值求出的值,进而判断所给命题的真假【详解】解:因为椭圆短的轴两顶点恰好是旋转前椭圆的两焦点,即,即,中,,,所以,故,所以正确;中,,,所以,所以不正确;中,,,所以,所以不正确;中,,,所以,所以不正确;故选:二、填空题:本题共4小题,每小题5分,共20分。13、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.14、【解析】根据题意由a-c=439+6371,a+c=2384+6371,求得2a即可.【详解】设椭圆的长半轴长为a,半焦距为c,由题意得:a-c=439+6371,a+c=2384+6371,两式相加得:2a=15565,因为椭圆上任意两点间的距离的最大值为长轴长2a,所以卫星运行轨道是上任意两点间的距离的最大值为,故答案为:1556515、【解析】首先利用椭圆的对称性和为平行四边形,可以得出、两点是关于轴对称,进而得到;设,,,从而求出,然后由,利用,求得,最后根据得出离心率【详解】解:是与轴重合的,且四边形为平行四边形,所以、两点的纵坐标相等,、的横坐标互为相反数,、两点是关于轴对称的由题知:四边形为平行四边形,所以可设,,代入椭圆方程解得:设为椭圆的右顶点,,四边形为平行四边形对点:解得:根据:得:故答案为:16、【解析】求出抛物线的焦点坐标即为的右焦点可得答案.【详解】由题意可知:抛物线的焦点坐标为,由题意知表示焦点在轴的椭圆,在椭圆中:,所以,因为,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由相互独立事件的概率可得;(2)根据各产品的市场占有率和合格率,由条件概率公式计算可得.【小问1详解】记随机抽取甲乙丙三家企业的一件产品,产品合格分别为事件,,,则三个事件相互独立,恰有两件产品合格为事件D,则故从三家企业的产品中各取一件抽检,则这三件产品中恰有两件合格的概率是【小问2详解】记事件B为购买的电器合格,记随机买一件产品,买到的产品为甲乙丙三个品牌分别为事件,,,,,,,,,故在市场中随机购买一台电器,买到的是合格品的概率为18、(1)(2)【解析】(1)由三点共线可知斜率相等,即可得出答案;(2)由题可得,利用错位相减法即可求出答案.【小问1详解】三点共线,【小问2详解】①②①—②得19、(1)(2)或【解析】(1)把点的坐标代入方程即可;(2)设直线方程,解联立方程组,消未知数,得到一元二次方程,再利用韦达定理和已知条件求斜率.【小问1详解】因为抛物线C的顶点在原点,焦点在x轴上,所以设抛物线方程为又因为点在抛物线C上,所以,解得,所以抛物线的方程为;【小问2详解】抛物线C的焦点为,当直线l的斜率不存在时,,不符合题意;当直线l的斜率存在时,设直线l的方程为,设直线l交抛物线的两点坐标为,,由得,,,,由抛物线得定义可知,所以,解得,即,所以直线l的方程为或20、(1)(2)【解析】(1)设正项的等比数列的公比为,根据题意列出方程组,求得的值,即可求得数列的通项公式;(2)由,结合乘公比错位相减求和,即可求解.小问1详解】解:设正项的等比数列的公比为,显然不为1,因为等比数列前4项和为且,可得,解得,所以数列的通项公式为.【小问2详解】解:由,所以,可得,两式相减得,所以.21、(1)(2)【解析】根据复合命题的真值表知:p真q假;非q是非p的充分不必要条件,等价于p是q的充分不必要条件,等价于p是q的真子集【详解】命题p:,即;命题,即;由于“”为真命题,则p真q假,从而由q假得,,所以x的取值范围是命题p:,即命题q:,即由于是的充分不必要条件,则p是q的充分不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论