2025届全国名校大联考数学高一上期末学业质量监测试题含解析_第1页
2025届全国名校大联考数学高一上期末学业质量监测试题含解析_第2页
2025届全国名校大联考数学高一上期末学业质量监测试题含解析_第3页
2025届全国名校大联考数学高一上期末学业质量监测试题含解析_第4页
2025届全国名校大联考数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届全国名校大联考数学高一上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为()A. B.C. D.2.已知函数(且),若函数图象上关于原点对称的点至少有3对,则实数a的取值范围是().A. B.C. D.3.已知函数,则的值是()A. B.C. D.4.已知函数.若,,,则的大小关系为()A. B.C. D.5.已知,,则“使得”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件6.已知,为锐角,,,则的值为()A. B.C. D.7.为了得到函数图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位8.已知条件,条件,则p是q的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.10.已知函数与的图像关于对称,则()A.3 B.C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,,若将绕直线旋转一周,则所形成的几何体的体积是__________12.已知函数,的值域为,则实数的取值范围为__________.13.把函数的图像向右平移后,再把各点横坐标伸长到原来的2倍,所得函数解析式是______14.在中,若,则的形状一定是___________三角形.15.函数的图象的对称中心的坐标为___________.16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值18.(1)计算(2)已知,求的值19.已知函数.(1)根据定义证明:函数在上是增函数;(2)根据定义证明:函数是奇函数.20.已知函数(1)求f(x)的最小正周期及单调递减区间;(2)若f(x)在区间上的最小值为1,求m的最小值21.已知函数,,其中(1)写出的单调区间(无需证明);(2)求在区间上的最小值;(3)若对任意,均存在,使得成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和2、A【解析】由于关于原点对称得函数为,由题意可得,与的图像在的交点至少有3对,结合函数图象,列出满足要求的不等式,即可得出结果.【详解】关于原点对称得函数为所以与的图像在的交点至少有3对,可知,如图所示,当时,,则故实数a的取值范围为故选:A【点睛】本题考查函数的对称性,难点在于将问题转换为与的图像在的交点至少有3对,考查了运算求解能力和逻辑推理能力,属于难题.3、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D4、C【解析】由函数的奇偶性结合单调性即可比较大小.【详解】根据题意,f(x)=x2﹣2|x|+2019=f(﹣x),则函数f(x)为偶函数,则a=f(﹣log25)=f(log25),当x≥0,f(x)=x2﹣2x+2019=(x﹣1)2+2018,在(0,1)上为减函数,在(1,+∞)上为增函数;又由1<20.8<2<log25,则.则有b<a<c;故选C【点睛】本题考查函数的奇偶性与单调性的判断以及性质的应用,属于基础题.5、C【解析】依据子集的定义进行判断即可解决二者间的逻辑关系.【详解】若使得,则有成立;若,则有使得成立.则“使得”是“”的充要条件故选:C6、A【解析】,根据正弦的差角公式展开计算即可.【详解】∵,,∴,又∵,∴,又,∴,∴,,∴故选:A.7、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的简单应用,属于基础题8、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B9、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.10、B【解析】根据同底的指数函数和对数函数互为反函数可解.【详解】由题知是的反函数,所以,所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以OA=,OB=1所以旋转体的体积:故答案为.12、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:13、【解析】利用三角函数图像变换规律直接求解【详解】解:把函数的图像向右平移后,得到,再把各点横坐标伸长到原来的2倍,得到,故答案为:14、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.15、【解析】利用正切函数的对称中心求解即可.【详解】令=(),得(),∴对称中心的坐标为故答案:()16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的单调性得出函数的单调性,最后根据函数的单调性即可计算出函数的最值【详解】(1)当点的坐标为,点的坐标为,因为点也在图像上,所以,即;(2)设函数上,则有,即,而在的图像上,所以,代入得;(3)因为、、,所以,,令函数,因为当时,函数单调递减,所以当时,函数单调递增,,,综上所述,最小值为,最大值为【点睛】本题考查了对数函数的相关性质,考查了对数的运算、对数函数的单调性以及最值,考查函数方程思想以及化归与转化思想,体现了基础性与综合性,提高了学生的逻辑推理能力18、(1);(2)3.【解析】(1)由题意结合对数的运算法则和对数恒等式的结论可得原式的值为;(2)令,计算可得原式.试题解析:(1);(2)设则,所以

.19、⑴见解析;⑵见解析.【解析】(1)利用单调性定义证明函数的单调性;(2)利用奇偶性定义证明函数奇偶性.试题解析:⑴设任意的,且,则,,即,又,,即,在上是增函数⑵,,,即所以函数是奇函数.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性20、(1).,

(2)【解析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果(2)利用正弦型函数的性质的应用求出结果【详解】(1)由题意,函数,==,所以的最小正周期:由,解得即函数的单调递减区间是

(2)由(1)知,因为,所以要使f(x)在区间上的最小值为1,即在区间上的最小值为-1所以,即所以m的最小值为【点睛】本题考查了三角函数关系式的变换,正弦型函数的性质的应用,其中解答中熟练应用三角函数的图象与性质,准确运算是解答的关键,着重考查了运算能力和转换能力及思维能力,属于基础题型21、(1)的单调递增区间是,单调递减区间是(2)(3)【解析】(1)利用去掉绝对值及一次函数的性质即可求解;(2)根据(1)的结论,利用单调性与最值的关系即可求解;(3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论