![浙江省嘉兴一中2025届数学高二上期末质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view14/M0B/21/03/wKhkGWclxJyARDxnAAIS5bToJl4504.jpg)
![浙江省嘉兴一中2025届数学高二上期末质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view14/M0B/21/03/wKhkGWclxJyARDxnAAIS5bToJl45042.jpg)
![浙江省嘉兴一中2025届数学高二上期末质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view14/M0B/21/03/wKhkGWclxJyARDxnAAIS5bToJl45043.jpg)
![浙江省嘉兴一中2025届数学高二上期末质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view14/M0B/21/03/wKhkGWclxJyARDxnAAIS5bToJl45044.jpg)
![浙江省嘉兴一中2025届数学高二上期末质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view14/M0B/21/03/wKhkGWclxJyARDxnAAIS5bToJl45045.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嘉兴一中2025届数学高二上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.两个圆和的位置是关系是()A.相离 B.外切C.相交 D.内含2.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.4.已知,为椭圆的左、右焦点,P为椭圆上一点,若,则P点的横坐标为()A. B.C.4 D.95.中国古代数学名著九章算术中有这样一个问题:今有牛、马、羊食人苗,苗主责之栗五斗羊主曰:“我羊食半马”马主曰:“我马食半牛”今欲哀偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗的主人要求赔偿5斗栗羊主人说:“我羊所吃的禾苗只有马的一半”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还栗a升,b升,c升,1斗为10升,则下列判断正确的是A.a,b,c依次成公比为2的等比数列,且B.a,b,c依次成公比为2的等比数列,且C.a,b,c依次成公比为的等比数列,且D.a,b,c依次成公比为的等比数列,且6.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内7.设直线的倾斜角为,且,则满足A. B.C. D.8.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.49.设集合,则AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}10.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现用4种不同的颜色(4种颜色全部使用)给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,则不同的涂色方案有()A.24种 B.48种C.72种 D.96种11.已知,,,,则下列不等关系正确的是()A. B.C. D.12.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在平行六面体中,底面是边长为1的正方形,的长度为2,且,则的长度为________14.已知数列前项和为,且,则_______.15.数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数16.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,是棱的中点.(1)试判断直线与平面的位置关系,并说明理由;(2)求证:直线面.18.(12分)两个顶点、的坐标分别是、,边、所在直线的斜率之积等于,顶点的轨迹记为.(1)求顶点的轨迹的方程;(2)若过点作直线与轨迹相交于、两点,点恰为弦中点,求直线的方程;(3)已知点为轨迹的下顶点,若动点在轨迹上,求的最大值.19.(12分)已知数列的前n项和为,且.(1)求数列的通项公式;(2)令,求数列的前n项和.20.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.21.(12分)已知集合,.若,且“”是“”的充分不必要条件,求实数a的取值范围22.(10分)如图,在直三棱柱中,,,,,分别为,的中点(1)求证:;(2)求直线与平面所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据圆的方程得出两圆的圆心和半径,再得出圆心距离与两圆的半径的关系,可得选项.【详解】圆的圆心为,半径,的圆心为,半径,则,所以两圆的位置是关系是相交,故选:C.【点睛】本题考查两圆的位置关系,关键在于运用判定两圆的位置关系一般利用几何法.即比较圆心之间的距离与半径之和、之差的大小关系,属于基础题.2、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.3、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.4、B【解析】设,,根据向量的数量积得到,与椭圆方程联立,即可得到答案;【详解】设,,,与椭圆联立,解得:,故选:B5、D【解析】由条件知,,依次成公比为的等比数列,三者之和为50升,根据等比数列的前n项和,即故答案为D.6、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C7、D【解析】因为,所以,,,,故选D8、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C9、B【解析】按交集定义求解即可.【详解】AB={2,3}故选:B10、B【解析】根据题意,分2步进行分析区域①、②、⑤和区域③、④的涂色方法,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:当区域①、②、⑤这三个区域两两相邻,有种涂色的方法;当区域③、④,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域③、④有2种涂色方法,故共有种涂色的方法.故选:B11、C【解析】不等式性质相关的题型,可以通过举反例的方式判断正误.【详解】若、均为负数,因为,则,故A错.若、,则,故B错.由不等式的性质可知,因为,所以,故C对.若,因为,所以,故D错.故选:C.12、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设一组基地向量,将目标用基地向量表示,然后根据向量的运算法则运算即可【详解】设,则有:则有:根据,解得:故答案为:14、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.15、(1)证明见解析;(2);(3)2021【解析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列;(2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是202116、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平面AEC,理由见解析(2)证明见解析【解析】(1)以线面平行的判定定理去证明直线与平面平行即可;(2)以线面垂直的判定定理去证明直线面即可.【小问1详解】连接BD,设,连接OE.在中,O、E分别是BD、的中点,则.因为直线OE在平面AEC上,而直线不在平面AEC上,根据直线与平面平行的判定定理,得到直线平面AEC.【小问2详解】正方体中,故,又,故同理故,又,故又根据直线与平面垂直的判定定理,得直线平面.18、(1)(2)(3)【解析】(1)先表示出边、所在直线的斜率,然后根据两条直线的斜率关系建立方程即可;(2)联立直线与椭圆方程,利用韦达定理和中点坐标公式即可求出直线的斜率;(3)先表示出,然后利用椭圆的性质,进而确定的最大值.【小问1详解】设点,则由可得:化简得:故顶点的轨迹的方程:【小问2详解】当直线的斜率不存在时,显然不符合题意;当直线的斜率存在时,设直线的方程为联立方程组消去可得:设直线与轨迹的交点,的坐标分别为由韦达定理得:点为、两点的中点,可得:,即则有:解得:故求直线的方程为:【小问3详解】由(1)可知,设则有:又点满足,即由椭圆的性质得:所以当时,19、(1)(2)【解析】(1)根据与的关系,分和两种情况,求出,再判断是否合并;(2)利用错位相减法求出数列的前n项和.【小问1详解】,当时,,当时,,也满足上式,数列的通项公式为:.【小问2详解】由(1)可得,①②①②得,20、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面积==,故=4,而故=8,解得=221、【解析】由题设A是的真子集,结合已知集合的描述列不等式求a的范围.【详解】由“”是“”的充分不必要条件,即A是的真子集,又,,所以,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子商务服务外包合同
- 的三方入股合作协议书
- 2025年云南货运从业资格考试题目
- 2025年泰安道路货物运输从业资格证考试
- 电子产品点胶代加工协议书(2篇)
- 2024年高考历史艺体生文化课第八单元工业文明冲击下的中国近代经济和近现代社会生活的变迁8.20近代中国经济结构的变动和资本主义的曲折发展练习
- 2024-2025学年高中数学课时分层作业13结构图含解析新人教B版选修1-2
- 2024-2025学年三年级语文下册第三单元11赵州桥教案新人教版
- 2024-2025学年高中历史第1单元中国古代的思想与科技第6课中国古代的科学技术教案含解析岳麓版必修3
- 员工物品交接单
- 高支模专项施工方案(专家论证)
- 深圳版初中英语单词汇总
- 健康养生,快乐生活课件
- 《物流与供应链管理-新商业、新链接、新物流》配套教学课件
- 物联网项目实施进度计划表
- MDD指令附录一 基本要求检查表2013版
- 骆驼祥子1一24章批注
- 新部编人教版四年级下册道德与法治全册教案(教学设计)
- 2021年胃肠外科规培出科考试试题及答案
- 人美版高中美术选修:《绘画》全册课件【优质课件】
- FANUC数控系统面板介绍与编程操作参考模板
评论
0/150
提交评论