版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省内江市球溪中学2025届数学高一上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查有关消费购买力的某项指标;(2)从某中学高一年级的10名体育特长生中抽取3人调查学习情况;应采用的抽样方法分别是()A.(1)用简单随机抽样,(2)用分层随机抽样 B.(1)(2)都用简单随机抽样C.(1)用分层随机抽样,(2)用简单随机抽样 D.(1)(2)都用分层随机抽样2.在空间坐标系中,点关于轴的对称点为()A. B.C. D.3.已知实数,,,则,,的大小关系为()A. B.C. D.4.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和5.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.6.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.7.设全集,,,则()A. B.C. D.8.已知函数在区间是减函数,则实数a的取值范围是A. B.C. D.9.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.10.已知函数是上的奇函数,且对任意实数、当时,都有.如果存在实数,使得不等式成立,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.角的终边经过点,则的值为______12.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________13.已知是R上的奇函数,且当时,,则的值为___________.14._____.15.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.16.若关于的方程只有一个实根,则实数的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断的奇偶性,并证明;(2)证明:在区间上单调递减.18.已知函数f(x)=sinωx-cosωx(ω>0)的最小正周期为π.(1)求函数y=f(x)图象对称轴方程;(2)讨论函数f(x)在上的单调性.19.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.20.参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数(1)①试解释与的实际意义;②写出函数应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由21.已知函数,(1)求证:为奇函数;(2)若恒成立,求实数的取值范围;(3)解关于的不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据简单随机抽样、分层抽样的适用条件进行分析判断.【详解】因为有关消费购买力的某项指标受家庭收入的影响,而社区家庭收入差距明显,所以①用分层抽样;从10名体育特长生中抽取3人调查学习情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样.故选:C2、C【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.3、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.4、B【解析】根据样本容量和其它各组的频数,即可求得答案.【详解】由题意可得:第3组频数为,故第3组的频率为,故选:B5、A【解析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.6、A【解析】点,由中点坐标公式得中得为:,即.故选A.7、B【解析】先求出集合B的补集,再求【详解】因为,,所以,因为,所以,故选:B8、C【解析】先由题意得到二次函数在区间是增函数,且在上恒成立;列出不等式组求解,即可得出结果.【详解】因为函数在区间是减函数,所以只需二次函数在区间是增函数,且在上恒成立;所以有:,解得;故选C【点睛】本题主要考查由对数型复合函数的单调性求参数的问题,熟记对数函数与二次函数的性质即可,属于常考题型.9、A【解析】由图象确定以及周期,进而得出,再由得出的值.【详解】显然因为,所以,所以由得所以,即,因为,所以所以.故选:A【点睛】本题主要考查了由函数图象确定正弦型函数的解析式,属于中档题.10、A【解析】∵f(x)是R上的奇函数,∴,不妨设a>b,∴a﹣b>0,∴f(a)﹣f(b)>0,即f(a)>f(b)∴f(x)在R上单调递增,∵f(x)为奇函数,∴f(x﹣c)+f(x﹣c2)>0等价于f(x﹣c)>f(c2﹣x)∴不等式等价于x﹣c>c2﹣x,即c2+c<2x,∵存在实数使得不等式c2+c<2x成立,∴c2+c<6,即c2+c﹣6<0,解得,,故选A点睛:处理抽象不等式的常规方法:利用单调性及奇偶性,把函数值间的不等关系转化为具体的自变量间的关系;同时注意区分恒成立问题与存在性问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】以三角函数定义分别求得的值即可解决.【详解】由角的终边经过点,可知则,,所以故答案为:12、①.##②.【解析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;13、【解析】由已知函数解析式可求,然后结合奇函数定义可求.【详解】因为是R上的奇函数,且当时,,所以,所以故答案为:14、【解析】利用诱导公式变形,再由两角和的余弦求解【详解】解:,故答案为【点睛】本题考查诱导公式的应用,考查两角和的余弦,是基础题15、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:16、【解析】把关于的方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,结合图象,即可求解.【详解】由题意,关于方程只有一个实根,转化为曲线与直线的图象有且只有一个交点,在同一坐标系内作出曲线与直线的图象,如图所示,结合图象可知,当直线介于和之间的直线或与重合的直线符合题意,又由直线在轴上的截距分别为,所以实数的取值范围是.故答案为.【点睛】本题主要考查了直线与圆的位置关系的应用,其中解答中把方程的解转化为直线与曲线的图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及数形结合思想的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是偶函数,证明见解析(2)证明见解析【解析】(1)先求定义域,再利用函数奇偶性的定义证明即可,(2)利用单调性的定义证明【小问1详解】为偶函数,证明如下:定义域为R,因为,所以是偶函数.【小问2详解】任取,且,则因为,所以,所以,即,由函数单调性定义可知,在区间上单调递减.18、(1);(2)单调增区间为;单调减区间为.【解析】(1)先化简得函数f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函数y=f(x)图象的对称轴方程.(2)先求函数的单调递增区间为(k∈Z),再给k取值,得到函数f(x)在上的单调性.【详解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x-=kπ+(k∈Z),得x=+(k∈Z),故函数f(x)的对称轴方程为x=+(k∈Z).(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函数f(x)的单调递增区间为(k∈Z).注意到x∈,令k=0,得函数f(x)在上的单调递增区间为;其单调递减区间为.【点睛】(1)本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握说和分析推理能力.(2)一般利用复合函数的单调性原理求复合函数的单调区间,首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.19、(1);(2)【解析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化得,若方程有解只需实数的取值范围为函数的值域,而,又因为,当时函数取得最小值,当时函数取得最大值,故实数的取值范围是.(2)由,当时函数取得最大值,当时函数取得最小值,故对一切恒成立只需,解得,所以实数的取值范围是.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.20、(1)表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上残留的污渍的;定义域为,值域为,在区间内单调递减.(2)当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.【解析】(1)①根据函数的实际意义说明即可;②由实际意义可得出函数的定义域,值域,单调性.(2)求出两种清洗方法污渍的残留量,并进行比较即可.【小问1详解】①表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上污渍的.②函数的定义域为,值域为,在区间内单调递减.【小问2详解】设清洗前衣服上的污渍为1,用单位的水,清洗一次后残留的污渍为,则;用单位的水清洗1次,则残留的污渍为,然后再用单位的水清洗1次,则残留的污渍为,因为,所以当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年县联社稽核例会和督导检查工作制度范例(三篇)
- 2024年幼儿园大班下学期班级工作计划(二篇)
- 2024年学生会外联部工作职责样本(二篇)
- 2024年学校创卫工作计划范例(二篇)
- 2024年委托管理合同参考范本(五篇)
- 2024年学校总务后勤工作计划模版(二篇)
- 【《关于追星情况的问卷调研报告》1600字(论文)】
- 2024年幼儿园保健医师工作计划范文(二篇)
- 2024年工程设计合同例文(二篇)
- 2024年大学教研室工作计划范文(三篇)
- 孤独之旅省公开课一等奖新名师比赛一等奖课件
- 人教新课标四年级上册数学《6速度、时间和路程》说课稿
- CPR操作与简易呼吸气囊的使用课件
- 中国吡唑醚菌酯行业市场现状调查及前景战略研判报告
- 肖申克的救赎读书分享会
- 新疆2024年新疆第三人民医院(自治区职业病医院)招聘136人笔试历年典型考题及考点附答案解析
- 2024年吉林省通化梅河口市公安局招录工作人员100人(高频重点提升专题训练)共500题附带答案详解
- 2024内蒙古事业单位联考招录(高频重点提升专题训练)共500题附带答案详解
- 2023-2024学年广东省揭阳市高一下学期期末教学质量测试数学试卷(含解析)
- 钢结构工程施工(第五版) 课件 2项目三 普通螺栓
- JGJ80-2016 建筑施工高处作业安全技术规范
评论
0/150
提交评论