2025届河南省驻马店市上蔡县第二高级中学高三数学第一学期期末经典模拟试题含解析_第1页
2025届河南省驻马店市上蔡县第二高级中学高三数学第一学期期末经典模拟试题含解析_第2页
2025届河南省驻马店市上蔡县第二高级中学高三数学第一学期期末经典模拟试题含解析_第3页
2025届河南省驻马店市上蔡县第二高级中学高三数学第一学期期末经典模拟试题含解析_第4页
2025届河南省驻马店市上蔡县第二高级中学高三数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省驻马店市上蔡县第二高级中学高三数学第一学期期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题:的否定为A. B.C. D.2.复数的模为().A. B.1 C.2 D.3.设是虚数单位,,,则()A. B. C.1 D.24.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.5.设,,,则,,三数的大小关系是A. B.C. D.6.已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则()A.PA,PB,PC两两垂直 B.三棱锥P-ABC的体积为C. D.三棱锥P-ABC的侧面积为7.已知抛物线的焦点为,过点的直线与抛物线交于,两点(设点位于第一象限),过点,分别作抛物线的准线的垂线,垂足分别为点,,抛物线的准线交轴于点,若,则直线的斜率为A.1 B. C. D.8.函数在的图象大致为A. B.C. D.9.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.3610.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.511.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足递推公式,且,则___________.14.已知椭圆Г:,F1、F2是椭圆Г的左、右焦点,A为椭圆Г的上顶点,延长AF2交椭圆Г于点B,若为等腰三角形,则椭圆Г的离心率为___________.15.平面向量与的夹角为,,,则__________.16.已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.18.(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.19.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.20.(12分)某地在每周六的晚上8点到10点半举行灯光展,灯光展涉及到10000盏灯,每盏灯在某一时刻亮灯的概率均为,并且是否亮灯彼此相互独立.现统计了其中100盏灯在一场灯光展中亮灯的时长(单位:),得到下面的频数表:亮灯时长/频数1020402010以样本中100盏灯的平均亮灯时长作为一盏灯的亮灯时长.(1)试估计的值;(2)设表示这10000盏灯在某一时刻亮灯的数目.①求的数学期望和方差;②若随机变量满足,则认为.假设当时,灯光展处于最佳灯光亮度.试由此估计,在一场灯光展中,处于最佳灯光亮度的时长(结果保留为整数).附:①某盏灯在某一时刻亮灯的概率等于亮灯时长与灯光展总时长的商;②若,则,,.21.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.22.(10分)如图,直三棱柱中,底面为等腰直角三角形,,,,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.2、D【解析】

利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:,复数的模为.故选:D.【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.3、C【解析】

由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:,,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.4、B【解析】

根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题5、C【解析】

利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【详解】由,,,所以有.选C.【点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.6、C【解析】

根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,,,,,、不可能垂直,即不可能两两垂直,,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.7、C【解析】

根据抛物线定义,可得,,又,所以,所以,设,则,则,所以,所以直线的斜率.故选C.8、A【解析】

因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.9、B【解析】

方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.10、A【解析】

根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.11、D【解析】

求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.12、D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.二、填空题:本题共4小题,每小题5分,共20分。13、2020【解析】

可对左右两端同乘以得,依次写出,,,,累加可得,再由得,代入即可求解【详解】左右两端同乘以有,从而,,,,将以上式子累加得.由得.令,有.故答案为:2020【点睛】本题考查数列递推式和累加法的应用,属于基础题14、【解析】

由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率【详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2a−t,所以|AB|=a+t=|BF1|=2a−t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设∠BAO=θ,则∠BAF1=2θ,所以Г的离心率e=,结合余弦定理,易得在中,,所以,即e==,故答案为:.【点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.15、【解析】

由平面向量模的计算公式,直接计算即可.【详解】因为平面向量与的夹角为,所以,所以;故答案为【点睛】本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型.16、【解析】

根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相垂直,因此当直线与圆相离时,恒为锐角,故,解得从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)求出函数的定义域,即可求出结论;(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.【详解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以实数的取值范围为.【点睛】本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.18、(1)的极坐标方程为,普通方程为;(2)【解析】

(1)根据三角函数恒等变换可得,,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围;【详解】(1),,即曲线的普通方程为,依题意得曲线的普通方程为,令,得曲线的极坐标方程为;(2)法一:将代入曲线的极坐标方程得,则,,,异号,,,;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,则,,,异号,,.【点睛】本题考查参数方程与普通方程,极坐标方程与平面直角坐标方程之间的转化,求解几何量的取值范围,关键在于明确极坐标系中极径和极角的几何含义,直线的参数方程,参数的几何意义,属于中档题.19、(1);(2)或【解析】试题分析:本题主要考查抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题等基础知识,同时考查考生的分析问题解决问题的能力、转化能力、运算求解能力以及数形结合思想.第一问,设出直线方程与抛物线方程联立,利用韦达定理得到y1+y2,y1y2,,代入到中解出P的值;第二问,结合第一问的过程,利用两种方法求出的长,联立解出m的值,从而得到直线的方程.试题解析:(Ⅰ)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则.因为,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化为y2-4my+2=1.y1+y2=4m,y1y2=2.…6分设AB的中点为M,则|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直线l的方程为,或.…12分考点:抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题.20、(1)(2)①,,②72【解析】

(1)将每组数据的组中值乘以对应的频率,然后再将结果相加即可得到亮灯时长的平均数,将此平均数除以(个小时),即可得到的估计值;(2)①利用二项分布的均值与方差的计算公式进行求解;②先根据条件计算出的取值范围,然后根据并结合正态分布概率的对称性,求解出在满足取值范围下对应的概率.【详解】(1)平均时间为(分钟)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳时间长度为72分钟.【点睛】本题考查根据频数分布表求解平均数、几何概型(长度模型)、二项分布的均值与方差、正态分布的概率计算,属于综合性问题,难度一般.(1)如果,则;(2)计算正态分布中的概率,一定要活用正态分布图象的对称性对应概率的对称性.21、(1);(2).【解析】

(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论