黑龙江省2025届高一数学第一学期期末综合测试试题含解析_第1页
黑龙江省2025届高一数学第一学期期末综合测试试题含解析_第2页
黑龙江省2025届高一数学第一学期期末综合测试试题含解析_第3页
黑龙江省2025届高一数学第一学期期末综合测试试题含解析_第4页
黑龙江省2025届高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省2025届高一数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为,则函数的图像大致为()A. B.C. D.2.“函数在区间I上严格单调”是“函数在I上有反函数”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件3.若则A. B.C. D.4.函数f(x)=+的定义域为()A. B.C. D.5.如图,在正方体中,与平面所成角的余弦值是A. B.C. D.6.若,则下列不等式成立的是()A. B.C. D.7.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切8.已知,,,则()A. B.C. D.9.函数的图象是()A. B.C. D.10.下列函数中既是奇函数,又在区间上是增函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________12.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.13.如果实数满足条件,那么的最大值为__________14.已知函数,则______,若,则______.15.已知P为△ABC所在平面外一点,且PA,PB,PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC,其中正确命题的个数是________16.函数的最大值为().三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.18.已知函数f(1)求f-23(2)作出函数的简图;(3)由简图指出函数的值域;(4)由简图得出函数的奇偶性,并证明.19.如图,在直四棱柱中,底面是边长为2的正方形,分别为线段,的中点.(1)求证:||平面;(2)四棱柱的外接球的表面积为,求异面直线与所成的角的大小.20.已知函数.若函数在区间上的最大值为,最小值为.(1)求函数的解析式;(2)求出在上的单调递增区间.21.已知函数(1)求证:在上是单调递增函数;(2)若在上的值域是,求a的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据不等式的解集求出参数,从而可得,根据该形式可得正确的选项【详解】因为不等式的解集为,故,故,故,令,解得或,故抛物线开口向下,与轴的交点的横坐标为,故选:C2、A【解析】“函数在区间上单调”“函数在上有反函数”,反之不成立.即可判断出结论【详解】解:“函数在区间上严格单调”“函数在上有反函数”,下面给出证明:若“函数在区间上严格单调”,设函数在区间上的值域为,任取,如果在中存在两个或多于两个的值与之对应,设其中的某两个为,且,即,但因为,所以(或)由函数在区间上单调知:,(或),这与矛盾.因此在中有唯一的值与之对应.由反函数的定义知:函数在区间上存在反函数反之“函数在上有反函数”则不一定有“函数在区间上单调”,例如:函数,就存在反函数:易知函数在区间上并不单调综上,“函数在区间上严格单调”是“函数在上有反函数”的充分不必要条件.故选:A3、A【解析】集合A三个实数0,1,2,而集合B表示的是大于等于1小于2的所有实数,所以两个集合的交集{1},故选A.考点:集合的运算.4、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.5、D【解析】连接,设正方体棱长为1.∵平面,∴∠为与平面所成角.∴故选D6、D【解析】根据不等式的性质逐项判断可得答案.【详解】对于A,因为,,故,故A错误对于B,因为,,故,故,故B错误对于C,取,易得,故C错误对于D,因为,所以,故D正确故选:D7、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.8、C【解析】求出集合,利用交集的定义可求得集合.【详解】已知,,,则,因此,.故选:C.9、C【解析】由已知可得,从而可得函数图象【详解】对于y=x+,当x>0时,y=x+1;当x<0时,y=x-1.即,故其图象应为C.故选:C10、B【解析】利用函数的定义域、奇偶性、单调性等性质分别对各选项逐一判断即可得解.【详解】对于A,函数图象总在x轴上方,不是奇函数,A不满足;对于B,函数在R上递增,且,该函数是奇函数,B满足;对于C,函数是偶函数,C不满足;对于D,函数定义域是非零实数集,而,D不满足.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;12、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.13、1【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为1【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题14、①.15②.-3或【解析】根据分段函数直接由内到外计算即可求,当时,分段讨论即可求解.【详解】,,时,若,则,解得或(舍去),若,则,解得,综上,或,故答案为:15;-3或【点睛】本题主要考查了分段函数的解析式,已知自变量求函数值,已知函数值求自变量,属于容易题.15、3【解析】如图所示,∵PA⊥PC,PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC,PC⊥AB,但AB不一定垂直于BC.故答案为:3.16、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,,,即,故,,当时,,不成立,舍去;当时,,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,,,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,故.故.18、(1)f(-23)=-(2)作图见解析;(3)[-1,1(4)f(x)为奇函数,证明见解析.【解析】(1)根据对应区间,将自变量代入解析式求值即可.(2)应用五点法确定点坐标列表,再描点画出函数图象.(3)由(2)图象直接写出值域.(4)由(2)图象判断奇偶性,再应用奇偶性定义证明即可.【小问1详解】由解析式知:f(-23)=【小问2详解】由解析式可得:x-2-1012f(x)0-1010∴f(x)的图象如下:【小问3详解】由(2)知:f(x)的值域为[-1,1【小问4详解】由图知:f(x)为奇函数,证明如下:当0<x<2,-2<-x<0时,f(-x)=(-x)当-2<x<0,0<-x<2时,f(-x)=-(-x)又f(x)的定义域为[-2,2],则f(x)19、(1)见解析;(2)【解析】(1)连接BD1,由中位线定理证明EF∥D1B,由线面平行的判定定理证明EF∥平面ABC1D1;(2)由(1)和异面直线所成角的定义,得异面直线EF与BC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BC⊥CD1,在RT△CC1D1中求出tan∠D1BC,求出∠D1BC可得答案.试题解析:(1)连接,在中,分别为线段的中点,∴为中位线,∴,而面,面,∴平面.(2)由(1)知,故即为异面直线与所成的角.∵四棱柱的外接球的表面积为,∴四棱柱的外接球的半径,设,则,解得,在直四棱柱中,∵平面,平面,∴,在中,,∴,∴异面直线与所成的角为.20、(1);(2)和.【解析】(1)根据已知条件可得出关于、的方程组,解出这两个量的值,即可得出函数的解析式;(2)由可计算出的取值范围,利用正弦型函数的单调性可求得函数在上的单调递增区间.【详解】(1)由题意知,若,则,所以,又因为,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论