浙江省杭州市第四中学2025届高一上数学期末教学质量检测试题含解析_第1页
浙江省杭州市第四中学2025届高一上数学期末教学质量检测试题含解析_第2页
浙江省杭州市第四中学2025届高一上数学期末教学质量检测试题含解析_第3页
浙江省杭州市第四中学2025届高一上数学期末教学质量检测试题含解析_第4页
浙江省杭州市第四中学2025届高一上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市第四中学2025届高一上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则的值等于A. B.C. D.2.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于()A. B.C. D.3.已知,,则下列不等式中恒成立的是()A. B.C. D.4.已知的三个顶点A,B,C及半面内的一点P,若,则点P与的位置关系是A.点P在内部 B.点P在外部C.点P在线段AC上 D.点P在直线AB上5.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱6.函数y=sin2x的图象可能是A. B.C. D.7.方程的解为,若,则A. B.C. D.8.已知直线和互相平行,则实数等于()A.或3 B.C. D.1或9.已知命题,,则p的否定是()A., B.,C., D.,10.已知集合,则=A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若x,y∈(0,+∞),且x+4y=1,则的最小值为________.12.已知,则________13.已知函数,则的值为_________.14.命题“存在x∈R,使得x2+2x+5=0”的否定是15.用表示函数在闭区间上的最大值.若正数满足,则的最大值为__________16.已知角的终边经过点,且,则t的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某市准备在道路的一侧修建一条运动比赛道,赛道的前一部分为曲线段,该曲线段是函数,时的图象,且图象的最高点为,赛道的中部分为长千米的直线跑道,且,赛道的后一部分是以为圆心的一段圆弧(1)求的值和的大小;(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,矩形的一边在道路上,一个顶点在半径上,另外一个顶点在圆弧上,且,求当“矩形草坪”的面积取最大值时的值18.设二次函数在区间上的最大值、最小值分别是M、m,集合若,且,求M和m的值;若,且,记,求的最小值19.已知函数.(1)求f(x)的定义域及单调区间;(2)求f(x)的最大值,并求出取得最大值时x的值;(3)设函数,若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.20.已知角的顶点在坐标原点,始边与轴非负半轴重合,终边经过点(1)求,;(2)求的值21.为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图,根据直方图所提供的信息:(1)求出图中a的值;(2)求该班学生这个周末的学习时间不少于20小时的人数;(3)如果用该班学生周末的学习时间作为样本去推断该校高一年级全体学生周末的学习时间,这样推断是否合理?说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为,所以,故选C.2、D【解析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出【详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ由题意可得:,解得R=4又2π×2=Rθ∴θ=π故选D【点睛】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题3、D【解析】直接利用特殊值检验及其不等式的性质判断即可.【详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.4、C【解析】由平面向量的加减运算得:,所以:,由向量共线得:即点P在线段AC上,得解【详解】因为:,所以:,所以:,即点P在线段AC上,故选C.【点睛】本题考查了平面向量的加减运算及向量共线,属简单题.5、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.6、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复7、C【解析】令,∵,.∴函数在区间上有零点∴.选C8、A【解析】由两直线平行,得到,求出,再验证,即可得出结果.详解】∵两条直线和互相平行,∴,解得或,若,则与平行,满足题意;若,则与平行,满足题意;故选:A9、D【解析】由否定的定义写出即可.【详解】p的否定是,.故选:D10、B【解析】分析:化简集合,根据补集的定义可得结果.详解:由已知,,故选B.点睛:本题主要一元二次不等式的解法以及集合的补集运算,意在考查运算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】由x+4y=1,结合目标式,将x+4y替换目标式中的“1”即可得到基本不等式的形式,进而求得它的最小值,注意等号成立的条件【详解】∵x,y∈(0,+∞)且x+4y=1∴当且仅当有时取等号∴的最小值为9故答案为:9【点睛】本题考查了基本不等式中“1”的代换,注意基本不等式使用条件“一正二定三相等”,属于简单题12、【解析】利用和的齐次分式,表示为表示的式子,即可求解.【详解】.故答案为:13、【解析】,填.14、对任何x∈R,都有x2+2x+5≠0【解析】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0故答案为对任何x∈R,都有x2+2x+5≠015、【解析】对分类讨论,利用正弦函数的图象求出和,代入,解出的范围,即可得解.【详解】当,即时,,,因为,所以不成立;当,即时,,,不满足;当,即时,,,由得,得,得;当,即时,,,由得,得,得,得;当,即时,,,不满足;当,即时,,,不满足.综上所述:.所以得最大值为故答案为:【点睛】关键点点睛:对分类讨论,利用正弦函数的图象求出和是解题关键.16、##0.5625【解析】根据诱导公式得sinα=-,再由任意角三角函数定义列方程求解即可.【详解】因为,所以sinα=-.又角α的终边过点P(3,-4t),故sinα==-,故,且解得t=(或舍)故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由题意可得,故,从而可得曲线段的解析式为,令x=0可得,根据,得,因此(2)结合题意可得当“矩形草坪”的面积最大时,点在弧上,由条件可得“矩形草坪”的面积为,然后根据的范围可得当时,取得最大值试题解析:(1)由条件得.∴.∴曲线段的解析式为.当时,.又,∴,∴.(2)由(1),可知.又易知当“矩形草坪”的面积最大时,点在弧上,故.设,,“矩形草坪”的面积为.∵,∴,故当,即时,取得最大值18、(Ⅰ),;(Ⅱ).【解析】(1)由……………1分又…3分…………4分……………5分……………6分(2)x=1∴,即……………8分∴f(x)=ax2+(1-2a)x+a,x∈[-2,2]其对称轴方程为x=又a≥1,故1-……………9分∴M=f(-2)="9a-2"…………10分m=……………11分g(a)=M+m=9a--1……………14分=………16分19、(1)定义域为(﹣1,3);f(x)的单调增区间为(﹣1,1],f(x)的单调减区间为[1,3);(2)当x=1时,函数f(x)取最大值1;(3)a≥﹣2.【解析】(1)利用对数的真数大于零即可求得定义域,根据复合函数的单调性“同增异减”即可求得单调区间;(2)根据函数的单调性即可求解;(3)将f(x)≤g(x)转化为x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,结合基本不等式即可求解.【详解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定义域为(﹣1,3),令t=2x+3﹣x2,则,∵为增函数,x∈(﹣1,1]时,t=2x+3﹣x2为增函数;x∈[1,3)时,t=2x+3﹣x2为减函数;故f(x)的单调增区间为(﹣1,1];f(x)的单调减区间为[1,3)(2)由(1)知当x=1时,t=2x+3﹣x2取最大值4,此时函数f(x)取最大值1;(3)若不等式f(x)≤g(x)在x∈(0,3)上恒成立,则2x+3﹣x2≤(a+2)x+4在x∈(0,3)上恒成立,即x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,当x∈(0,3)时,x+≥2,则﹣(x+)≤﹣2,故a≥﹣220、(1)(2)1【解析】(1)根据三角函数的定义,计算即可得答案.(2)根据诱导公式,整理化简,代入,的值,即可得答案.【小问1详解】因为角终边经过点,所以,【小问2详解】原式21、(1)(2)9(3)不合理,理由见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论