2025届浙江省鄞州中学高一上数学期末检测模拟试题含解析_第1页
2025届浙江省鄞州中学高一上数学期末检测模拟试题含解析_第2页
2025届浙江省鄞州中学高一上数学期末检测模拟试题含解析_第3页
2025届浙江省鄞州中学高一上数学期末检测模拟试题含解析_第4页
2025届浙江省鄞州中学高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省鄞州中学高一上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合M={x|1≤x<3},N={1,2},则M∩N=()A. B.C. D.2.已知函数,则函数的零点个数是A.1 B.2C.3 D.43.下列各式中成立的是A. B.C. D.4.已知集合,则下列关系中正确的是()A. B.C. D.5.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.6.,,这三个数之间的大小顺序是()A. B.C. D.7.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且8.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知集合A={0,1},B={-1,0},则A∩B=()A.0, B.C. D.10.设集合,则()A.{1,3} B.{3,5}C.{5,7} D.{1,7}二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,动点P到两条直线与的距离之和等于2,则点P到坐标原点的距离的最小值为_________.12.已知水平放置的按“斜二测画法”得到如图所示的直观图,其中,,则原的面积为___________13.已知,则____________14.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.15.如果二次函数在区间上是增函数,则实数的取值范围为________16.设角的顶点与坐标原点重合,始边与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的定义域,并判断函数的奇偶性;(2)求使x的取值范围18.如图,某园林单位准备绿化一块直径为的半圆形空,外的地方种草,的内接正方形为一水池,其余的地方种花,若,,,设的面积为,正方形的面积为(1)用表示和;(2)当变化时,求的最小值及此时角的大小.19.已知函数.(1)求的值;你能发现与有什么关系?写出你的发现并加以证明:(2)试判断在区间上的单调性,并用单调性的定义证明.20.已知函数是偶函数(1)求实数的值(2)设,若函数与的图象有且只有一个公共点,求实数的取值范围21.函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示(1)求A,ω,φ的值;(2)求图中a,b的值及函数f(x)的递增区间;(3)若α∈[0,π],且f(α)=,求α的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据集合交集的定义可得所求结果【详解】∵,∴故选B【点睛】本题考查集合的交集运算,解题的关键是弄清两集合交集中元素的特征,进而得到所求集合,属于基础题2、A【解析】设,则函数等价为,由,转化为,利用数形结合或者分段函数进行求解,即可得到答案【详解】由题意,如图所示,设,则函数等价为,由,得,若,则,即,不满足条件若,则,则,满足条件,当时,令,解得(舍去);当时,令,解得,即是函数的零点,所以函数的零点个数只有1个,故选A【点睛】本题主要考查了函数零点问题的应用,其中解答中利用换元法结合分段函数的表达式以及数形结合是解决本题的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.3、D【解析】根据指数运算法则分别验证各个选项即可得到结果.【详解】中,中,,中,;且等式不满足指数运算法则,错误;中,,错误;中,,则,错误;中,,正确.故选:【点睛】本题考查指数运算法则的应用,属于基础题.4、C【解析】利用元素与集合、集合与集合的关系可判断各选项的正误.详解】∵,∴,所以选项A、B、D错误,由空集是任何集合的子集,可得选项C正确.故选:C.【点睛】本题考查元素与集合、集合与集合关系的判断,属于基础题.5、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.6、C【解析】利用指数函数和对数函数的性质比较即可【详解】解:因为在上为减函数,且,所以,因为在上为增函数,且,所以,因为在上为增函数,且,所以,综上,,故选:C7、A【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【点睛】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题8、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.9、B【解析】利用交集定义直接求解【详解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故选B【点睛】本题考查交集的求法,考查交集定义,是基础题10、B【解析】先求出集合B,再求两集合的交集【详解】由,得,解得,所以,因为所以故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵3x﹣y=0与x+3y=0的互相垂直,且交点为原点,∴设点P到两条直线的距离分别为a,b,则a≥0,b≥0,则a+b=2,即b=2﹣a≥0,得0≤a≤2,由勾股定理可知===,∵0≤a≤2,∴当a=1时,的距离,故答案为12、2【解析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高为2,△ABC面积为.点睛:由斜二测画法知,设直观图的面积为,原图形面积为,则13、##0.8【解析】利用同角三角函数的基本关系,将弦化切再代入求值【详解】解:,则,故答案为:14、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.15、【解析】函数对称轴为,则由题意可得,解出不等式即可.【详解】∵函数的对称轴为且在区间上是增函数,∴,即.【点睛】已知函数在某个区间上的单调性,则这个区间是这个函数对应单调区间的子集.16、##0.5【解析】利用余弦函数的定义即得.【详解】∵角的终边上一点的坐标为,∴.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)定义域为,奇函数;(2)【解析】(1)只需解不等式组即可得出f(x)的定义域;求f(﹣x)即可得到f(﹣x)=﹣f(x),从而得出f(x)为奇函数;(2)讨论a:a>1,和0<a<1,根据f(x)的定义域及对数函数的单调性即可求得每种情况下原不等式的解详解】解:(1)要使函数(且)有意义,则,解得故函数的定义域为,关于原点对称,又,所以,为奇函数(2)由,即,当时,原不等式等价为,解得当,原不等式等价为,解得又因为的定义域为,所以,当时,使的x的取值范围是.当时,使的x的取值范围是18、(1);(2)最小值【解析】(1)在中,可用表示,从而可求其面积,利用三角形相似可得的长度,从而可得.(2)令,从而可得,利用的单调性可求的最小值.【详解】(1)在中,,所以,.而边上的高为,设斜边上的为,斜边上的高为,因,所以,故,故,.(2),令,则.令,设任意的,则,故为减函数,所以,故,此时即.【点睛】直角三角形中的内接正方形的问题,可借助于解直角三角形和相似三角形得到各边与角的关系,三角函数式的最值问题,可利用三角变换化简再利用三角函数的性质、换元法等可求原三角函数式的最值.19、(1),,与的关系:,证明见解析(2)在上单调递减,证明见解析【解析】(1)通过函数解析式计算出,通过计算证明.(2)通过来证得在区间上单调递减.【小问1详解】,.证明:..【小问2详解】在区间上递减.证明如下:且.在上单调递减.20、(1)(2)【解析】(1)根据是偶函数,由成立求解;(2)函数与图象有且只有一个公共点,即方程有且只有一个根,令,转化为方程有且只有一个正根求解.【小问1详解】解:函数,因为是偶函数,所以,即,即对一切恒成立,所以;【小问2详解】因为函数与的图象有且只有一个公共点,所以方程有且只有一个根,即方程有且只有一个根,令,则方程有且只有一个正根,当时,解得,不合题意;当时,开口向上,且过定点,符合题意,当时,,解得,综上:实数的取值范围是.21、(1);(2),递增区间为;(3)或.【解析】(1)利用函数图像可直接得出周期T和A,再利用,求出,然后利用待定系数法直接得出的值(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间(3)令结合即可求得的取值【详解】解:(1)由图象知A=2,=-(-)=,得T=π,即=2,得ω=1,又f(-)=2sin[2×(-)+φ]=-2,得sin(-+φ)=-1,即-+φ=-+2kπ,即ω=+2kπ,k∈Z,∵|φ|<,∴当k=0时,φ=,即A=2,ω=1,φ=;(2)a=--=--=-,b=f(0)=2sin=2×=1,∵f(x)=2sin(2x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论