版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市石庄中学2025届高二上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“存在,使得”的否定为()A.存在, B.对任意,C对任意, D.对任意,2.已知为抛物线上一点,点P到抛物线C的焦点的距离与它到y轴的距离之比为,则()A.1 B.C.2 D.33.已知三棱柱中,,,D点是线段上靠近A的一个三等分点,则()A. B.C. D.4.已知焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B.C.2 D.5.若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6 B.10C.11 D.126.如图,在平行六面体中,()A. B.C. D.7.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.28.《周髀算经》是中国最古老的天文学和数学著作,书中提到:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列.若冬至、大寒、雨水的日影子长的和是尺,芒种的日影子长为尺,则冬至的日影子长为()A.尺 B.尺C.尺 D.尺9.已知双曲线的一条渐近线方程为,且与椭圆有公共焦点.则C的方程为()A. B.C. D.10.已知椭圆的两个焦点分别为,且平行于轴的直线与椭圆交于两点,那么的值为()A. B.C. D.11.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为()A. B.C. D.12.4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种 B.81种C.64种 D.256种二、填空题:本题共4小题,每小题5分,共20分。13.过点作圆的切线l,直线与l平行,则直线l过定点_________,与l间的距离为____________14.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.15.已知椭圆:的右焦点为,且经过点(1)求椭圆的方程以及离心率;(2)若直线与椭圆相切于点,与直线相交于点.在轴是否存在定点,使?若存在,求出点的坐标;若不存在,说明理由16.桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)讨论的单调区间;(2)求在上的最大值.18.(12分)四棱锥中,平面,四边形为平行四边形,(1)若为中点,求证平面;(2)若,求面与面的夹角的余弦值.19.(12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直线BC与平面PCD所成角的正弦值为.(1)求证:平面PCD⊥平面PAC;(2)求平面PAB与平面PCD所成锐二面角的余弦值.20.(12分)已知函数.(1)求函数在处的切线方程;(2)求函数在区间上的最大值与最小值.21.(12分)已知二次曲线的方程:(1)分别求出方程表示椭圆和双曲线的条件;(2)若双曲线与直线有公共点且实轴最长,求双曲线方程;(3)为正整数,且,是否存在两条曲线,其交点P与点满足,若存在,求的值;若不存在,说明理由22.(10分)已知椭圆焦距为,点在椭圆C上(1)求椭圆C的方程;(2)过点的直线与C交于M,N两点,点R是直线上任意一点,设直线的斜率分别为,若,求的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.2、B【解析】先求出点的坐标,然后根据抛物线的定义和已知条件列方程求解即可【详解】因为为抛物线上一点,所以,得,所以,抛物线的焦点为,因为点P到抛物线C的焦点的距离与它到y轴的距离之比为,所以,化简得,因为,所以,故选:B3、A【解析】在三棱柱中,,转化为结合已知条件计算即可.【详解】在三棱柱中,满足,且,则,,D点是线段上靠近A的一个三等分点,则,由向量的减法运算得,.故选:A【点睛】关键点点睛:在三棱柱中,,由向量的减法运算得,再展开利用数量积运算.4、D【解析】由题意,化简即可得出双曲线的离心率【详解】解:由题意,.故选:D5、C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C6、B【解析】由空间向量的加法的平行四边形法则和三角形法则,可得所求向量【详解】连接,可得,又,所以故选:B.7、A【解析】根据正态曲线的对称性即可求得答案.【详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.8、D【解析】根据题意转化为等差数列,求首项.【详解】设冬至的日影长为,雨水的日影长为,根据等差数列的性质可知,芒种的日影长为,,解得:,,所以冬至的日影长为尺.故选:D9、B【解析】根据已知和渐近线方程可得,双曲线焦距,结合的关系,即可求出结论.【详解】因为双曲线的一条渐近线方程为,则①.又因为椭圆与双曲线有公共焦点,双曲线的焦距,即c=3,则a2+b2=c2=9②.由①②解得a=2,b=,则双曲线C的方程为.故选:B.10、A【解析】根据椭圆的方程求出,再由椭圆的对称性及定义求解即可.【详解】由椭圆的对称性可知,,所以,又椭圆方程为,所以,解得,所以,故选:A11、A【解析】设椭圆方程为,解方程组即得解.【详解】解:设椭圆方程为,由题意可知,椭圆的面积为,且、、均为正数,即,解得,因为椭圆的焦点在轴上,所以的标准方程为.故选:A.12、D【解析】利用分步乘法计数原理进行计算.【详解】每位同学均有四种选择,故不同的报名方法有种.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.②.##2.4【解析】利用直线与平行,结合切线的性质求出切线的方程,即可确定定点坐标,再利用两条平行线间的距离公式求两线距离.【详解】由题意,直线斜率,设直线的方程为,即∴直线l过定点,由与圆相切,得,解得,∴的方程为,的方程为,则两直线间的距离为故答案为:;.14、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.15、(1),;(2)存在定点,为【解析】(1)利用,,求解方程(2)设直线方程为,与椭圆联立利用判别式等于0得,并求得切点坐标及,假设存在点,利用化简求值【详解】(1)由已知得,,,,椭圆的方程为,离心率为;(2)在轴存在定点,为使,证明:设直线方程为代入得,化简得由,得,,设,则,,则,设,则,则假设存在点解得所以在轴存在定点使【点睛】本题考查直线与椭圆的位置关系,考查切线的应用,利用判别式等于0得坐标是解决问题的关键,考查计算能力,是中档题16、4【解析】根据题意,由游戏规则,结合余数的性质,分析可得答案【详解】解:根据题意,第一次该拿走4个球,以后的取球过程中,对方取个,自己取个,由于,则自己一定可以取到第100个球.故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①,在上单减;②,在上单增,单减;(2).【解析】(1),根据函数定义域,分,,讨论求解;(2)根据(1)知:分,,,讨论求解.【小问1详解】解:(1)定义域,①时,成立,所以在上递减;②时,当时,,当时,,所以在上单增,单减;【小问2详解】由(1)知:时,在单减,所以;时,在单减,所以;时,在上单增,上递减,所以;时,在单增,所以;综上:.18、(1)证明见解析(2)【解析】(1)先证,,再证平面即可;(2)建立空间直角坐标系,先求出面与面的法向量,再计算夹角余弦值即可.小问1详解】取中点,连接,则四边形为平行四边形,,为直角三角形,且.又平面,平面,.又,平面.【小问2详解】,为等边三角形,取中点,连接,则,以为坐标原点,分别以为轴建立空间坐标系,如图令,则,设面的法向量为,则由得取,则设面的法向量为,则由得取,则设面与面的夹角为,则所以面与面的夹角的余弦值为.19、(1)证明见解析(2)【解析】(1)取的中点,连接,证明,由线面垂直的判定定理可证明平面,再利用面面垂直的判定定理可证得结论,(2)过点作于,以为原点,建立空间直角坐标系,如图所示,设,先根据直线BC与平面PCD所成角的正弦值为,求出,然后再求出平面PAB的法向量,利用向量的夹角公式可求得结果【小问1详解】证明:取的中点,连接,因为AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四边形为平行四边形,所以,所以,因为平面,平面,所以,因为,所以平面,因为平面,所以平面平面,【小问2详解】过点作于,以为原点,建立空间直角坐标系,如图所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,则,所以设因为平面,所以所以,设平面的法向量为,则,令,则,因为直线BC与平面PCD所成角的正弦值为,所以,解得,所以,,设平面的法向量为,因为,所以,令,则,所以,所以平面PAB与平面PCD所成锐二面角的余弦值为20、(1)(2),【解析】(1)根据导数的几何意义即可求解;(2)根据导数的正负判断f(x)的单调性,根据其单调性即可求最大值和最小值.【小问1详解】,切点为(1,-2),∵,∴切线斜率,切线方程为;【小问2详解】令,解得,1200极大值极小值2∵,,∴当时,,.21、(1)时,方程表示椭圆,时,方程表示双曲线;(2);(3)存在,且或或.【解析】(1)当且仅当分母都为正,且不相等时,方程表示椭圆;当且仅当分母异号时,方程表示双曲线(2)将直线与曲线联立化简得:,利用双曲线与直线有公共点,可确定的范围,从而可求双曲线的实轴,进而可得双曲线方程;(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质,任意两椭圆之间无公共点,任意两双曲线之间无公共点,从而可求【详解】(1)当且仅当时,方程表示椭圆;当且仅当时,方程表示双曲线(2)化简得:△或所以双曲线的实轴为,当时,双曲线实轴最长为此时双曲线方程为(3)由(1)知,,是椭圆,,,,是双曲线,结合图象的几何性质任意两椭圆之间无公共点,任意两双曲线之间无公共点设,,,2,,,6,7,由椭圆与双曲线定义及;所以所以这样的,存在,且或或【点睛】方法点睛:曲线方程的确定可分为两类:若已知曲线类型,则采用待定系数法;若曲线类型未知时,则可利用直接法、定义法、相关点法等求解或者利用分类讨论思想求解.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程建设项目合作与土地使用权转让合同
- 2024年度国际信用证开证与保兑合同
- 辽宁省沈阳市郊联体2024-2025学年高二上学期期中考试政治试题 含解析
- 第五章2024年度国际货物买卖法下技术开发合同细节3篇
- 对公账户汇款合同模板
- 二零二四年度光伏发电站设计施工合同
- 瓷砖原料供应长期合作协议
- 二零二四年高级轿车买卖及售后服务合同
- 二零二四年度废弃物处理与拆除合同
- 劳动安全卫生专项集体合同(2篇)
- 西昌市争创全国百强县工作实施方案
- 大学生职业素养PPT幻灯片课件(PPT 84页)
- 建筑工程经济与管理的调查报告1
- 人教版九年级英语上册复习课件全册
- 打开诗的翅膀(儿童诗创作指导)通用PPT课件
- 小额纳税人证明模板
- 三年泡胖大海
- 物联网与智慧农业.
- 《七律长征》教案
- 小学数学C4支持学生创造性学习与表达-教学设计方案+教学反思+案例【2.0微能力获奖作品】
- 市政工程施工安全检查标准评分表
评论
0/150
提交评论