四川省资阳市高中2025届高二上数学期末监测试题含解析_第1页
四川省资阳市高中2025届高二上数学期末监测试题含解析_第2页
四川省资阳市高中2025届高二上数学期末监测试题含解析_第3页
四川省资阳市高中2025届高二上数学期末监测试题含解析_第4页
四川省资阳市高中2025届高二上数学期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省资阳市高中2025届高二上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.42.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为()A. B.C. D.3.已知椭圆的离心率为,直线与椭圆交于两点,为坐标原点,且,则椭圆的方程为A B.C. D.4.已知点,,,动点P满足,则的取值范围为()A. B.C. D.5.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.76.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确7.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.4008.已知三角形三个顶点为、、,则边上的高所在直线的方程为()A. B.C. D.9.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则10.某四面体的三视图如图所示,该四面体的表面积为()A. B.C. D.11.若函数在上为单调减函数,则的取值范围()A. B.C. D.12.已知x是上的一个随机的实数,则使x满足的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若p:存在,使是真命题,则实数a的取值范围是______14.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.15.设a为实数,若直线与直线平行,则a值为______.16.在平面直角坐标系中,直线与椭圆交于两点,且,则该椭圆的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.18.(12分)已知直线和,设a为实数,分别根据下列条件求a的值:(1)(2)19.(12分)已知直线:,直线:.(1)若,求与的距离;(2)若,求与的交点的坐标.20.(12分)某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.21.(12分)如图,在三棱锥中,平面平面,,都是等腰直角三角形,,,,分别为,的中点.(1)求证:平面;(2)求证:平面.22.(10分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B2、A【解析】设椭圆方程为,解方程组即得解.【详解】解:设椭圆方程为,由题意可知,椭圆的面积为,且、、均为正数,即,解得,因为椭圆的焦点在轴上,所以的标准方程为.故选:A.3、D【解析】根据等腰直角三角形的性质可得,将代入椭圆方程,结合离心率为以及性质列方程组求得与的值,从而可得结果.【详解】设直线与椭圆在第一象限的交点为,因为,所以,即,由可得,,故所求椭圆的方程为.故选D.【点睛】本题主要考查椭圆的标准方程与性质,以及椭圆离心率的应用,意在考查对基础知识掌握的熟练程度,属于中档题.4、C【解析】由题设分析知的轨迹为(不与重合),要求的取值范围,只需求出到圆上点的距离范围即可.【详解】由题设,在以为直径的圆上,令,则(不与重合),所以的取值范围,即为到圆上点的距离范围,又圆心到的距离,圆的半径为2,所以的取值范围为,即.故选:C5、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.6、C【解析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C7、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B8、A【解析】求出直线的斜率,可求得边上的高所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】直线的斜率为,故边上的高所在直线的斜率为,因此,边上的高所在直线的方程为.故选:A.9、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C10、A【解析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为,故选:A.11、A【解析】分析可知对任意的恒成立,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,则,当时,在上单调递减,在上单调递减,所以,,故.故选:A.12、B【解析】先解不等式得到的范围,再利用几何概型的概率公式进行求解.【详解】由得,即,所以使x满足的概率为故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将问题分离参数得到存在,使成立,可得结论.【详解】存在,使,即存在,使,所以故答案为:14、【解析】分别以所在直线为轴,建立空间直角坐标系,设,则,,即异面直线A1M与DN所成角的大小是考点:异面直线所成的角15、【解析】根据两直线平行得到,解方程组即可求出结果.【详解】由题意可知,解得,故答案为:.16、【解析】直线与椭圆相交,求交点,利用列式求解即可.【详解】联立方程得,因为,所以,即,所以,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于的一元二次方程,运用韦达定理弦长公式列方程得解.【小问1详解】双曲线离心率为,实轴长为2,,,解得,,,所求双曲线C的方程为;∴双曲线C的焦点坐标为,渐近线方程为,即为,∴双曲线焦点到渐近线的距离为.【小问2详解】设,,联立,,,,,,解得18、(1)a=4或a=-2(2)a=【解析】(1)根据,由a(a-2)-2×4=0求解;(2)根据,由4a=-2(a-2)求解.【小问1详解】解:因为,所以a(a-2)-2×4=0,解得a=4或a=-2所以当时,a=4或a=-2;【小问2详解】因为,所以4a=-2(a-2),解得a=检验:此时,,成立所以当时,a=.19、(1).(2).【解析】分析:(1)先根据求出k的值,再利用平行线间的距离公式求与的距离.(2)先根据求出k的值,再解方程组得与的交点的坐标.详解:(1)若,则由,即,解得或.当时,直线:,直线:,两直线重合,不符合,故舍去;当时,直线:,直线:,所以.(2)若,则由,得.所以两直线方程为:,:,联立方程组,解得,所以与的交点的坐标为.点睛:(1)本题主要考查直线的位置关系和距离的计算,意在考查学生对这些知识的掌握水平和计算能力.(2)直线与直线平行,则且两直线不重合.直线与直线垂直,则.20、(1)(2)当单价应定为22.5元时,可获得最大利润【解析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21、(1)证明见解析(2)证明见解析【解析】(1)由三角形的中位线定理可证得MN∥AB,再由线面垂直的判定定理可证得结论,(2)由已知可得AB⊥BC,VC⊥AC,再由已知结合面面垂直的性质定理可得VC⊥平面ABC,从而有AB⊥VC,然后由线面垂直的判定定理可证得结论【小问1详解】证明:∵M,N分别为VA,VB的中点,∴MN∥AB,∵AB⊄平面CMN,MN⊂平面CMN,∴AB∥平面CMN【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论