福建省泉州市泉港区泉州市泉港区第一中学2025届数学高二上期末质量检测试题含解析_第1页
福建省泉州市泉港区泉州市泉港区第一中学2025届数学高二上期末质量检测试题含解析_第2页
福建省泉州市泉港区泉州市泉港区第一中学2025届数学高二上期末质量检测试题含解析_第3页
福建省泉州市泉港区泉州市泉港区第一中学2025届数学高二上期末质量检测试题含解析_第4页
福建省泉州市泉港区泉州市泉港区第一中学2025届数学高二上期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市泉港区泉州市泉港区第一中学2025届数学高二上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列前项和,已知,,则的值是().A. B.C. D.2.已知,,,执行如图所示的程序框图,输出的值为()A. B.C. D.3.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A. B.2C. D.4.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.35.已知三棱柱的所有棱长均为2,平面,则异面直线,所成角的余弦值为()A. B.C. D.6.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.7.阅读如图所示程序框图,运行相应的程序,输出的S的值等于()A.2 B.6C.14 D.308.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.79.曲线y=lnx在点M处的切线过原点,则该切线的斜率为()A.1 B.eC.-1 D.10.在等比数列中,若是函数的极值点,则的值是()A. B.C. D.11.执行如图所示的程序框图,输出的s值为()A.8 B.9C.27 D.3612.已知点分别是椭圆的左、右焦点,点P在此椭圆上,,则的面积等于A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示四棱锥,底面ABCD为直角梯形,,,,,是底面ABCD内一点(含边界),平面MBD,则点O轨迹的长度为_____________.14.经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________15.若展开式的二项式系数之和是64,则展开式中的常数项的值是__________.16.已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长为4,离心率等于(1)求椭圆的方程(2)设,若椭圆E上存在两个不同点P、Q满足,证明:直线PQ过定点,并求该定点的坐标.18.(12分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离19.(12分)设或,(1)若时,p是q的什么条件?(2)若p是q的必要不充分条件,求a的取值范围20.(12分)已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长21.(12分)已知定义域为的函数是奇函数,其中为指数函数且的图象过点(1)求的表达式;(2)若对任意的.不等式恒成立,求实数的取值范围;22.(10分)已知关于的不等式(1)若不等式的解集为,求的值(2)若不等式的解集为,求的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意,设等差数列的公差为,则,故,故,故选2、B【解析】计算出、的值,执行程序框图中的程序,进而可得出输出结果.【详解】,,则,执行如图所示的程序,,成立,则,不成立,输出的值为.故选:B.3、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.4、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.5、A【解析】建立空间直角坐标系,利用向量法求解【详解】以为坐标原点,平面内过点且垂直于的直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示,则,,,,∴,,∴,∴异面直线,所成角的余弦值为.故选:A6、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D7、C【解析】模拟运行程序,直到得出输出的S的值.【详解】运行程序框图,,,;,,;,,;,输出.故选:C8、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.9、D【解析】设出点坐标,结合导数列方程,由此求得切点坐标并求得切线的斜率.【详解】设切点为,,故在点的切线的斜率为,所以,所以切点为,切线的斜率为.故选:D10、B【解析】根据导数的性质求出函数的极值点,再根据等比数列的性质进行求解即可.【详解】,当时,单调递增,当时,单调递减,当时,单调递增,所以是函数的极值点,因为,且所以,故选:B11、B【解析】执行程序框图,第一次循环,,满足;第二次循环,,满足;第三次循环,,不满足,输出,故选B.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.12、B【解析】根据椭圆标准方程,可得,结合定义及余弦定理可求得值,由及三角形面积公式即可求解.【详解】椭圆则,所以,则由余弦定理可知代入化简可得,则,故选:B.【点睛】本题考查了椭圆的标准方程及几何性质的简单应用,正弦定理与余弦定理的简单应用,三角形面积公式的用法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】绘出如图所示的辅助线,然后通过平面平面得出点轨迹为线段,最后通过求出、的长度即可得出结果.【详解】如图,延长到点,使且,连接,取上点,使得,作,交于点,交于点,连接,因为,所以,因为,又,所以,,因为,,,所以平面平面,因为平面,面,所以点轨迹为线段,因为,,所以,因为,,,所以,因为底面为直角梯形,所以,,,,故答案为:.14、4x+3y-6=0【解析】直接求出两直线l1:x﹣2y+4=0和l2:x+y﹣2=0的交点P的坐标,求出直线的斜率,然后求出所求直线方程【详解】由方程组可得P(0,2)∵l⊥l3,∴kl=﹣,∴直线l的方程为y﹣2=﹣x,即4x+3y-6=0故答案为:4x+3y-6=015、【解析】首先利用展开式的二项式系数和是求出,然后即可求出二项式的常数项.【详解】由题知展开式的二项式系数之和是,故有,可得,知当时有.故展开式中的常数项为.故答案为:.【点睛】本题考查了利用二项式的系数和求参数,求二项式的常数项,属于基础题.16、(1)证明见解析;(2)①;②.【解析】(1)由可证得结论成立;(2)①设点、,利用点差法可求得直线的斜率,利用点斜式可得出所求直线的方程;②将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,利用平面向量数量积的坐标运算可得出关于的等式,可求出的值,即可得出椭圆的方程.【详解】(1),,因此,;(2)①由(1)知,椭圆的方程为,即,当在椭圆的内部时,,可得.设点、,则,所以,,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;②联立,消去可得.,由韦达定理可得,,又,而,,,解得合乎题意,故,因此,椭圆的方程为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,.【解析】(1)由题可得,即求;(2)设直线PQ的方程为,联立椭圆方程,利用韦达定理法可得,即得.【小问1详解】由题可设椭圆的方程为,则,∴,∴椭圆的方程为;【小问2详解】当直线PQ的斜率存在时,可设直线PQ的方程为,设,由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直线PQ的方程为过定点;当直线PQ的斜率不存在时,不合题意.故直线PQ过定点,该定点的坐标为.18、(1)(2)【解析】(1)建立空间直角坐标系,利用向量法由求解;(1)建立空间直角坐标系,先取得平面的一个法向量,,,然后由求解【小问1详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系.则,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,则直线与直线所成角的余弦值为;【小问2详解】,2,,,2,,设平面的一个法向量,,,则,取,得,1,,又,点到平面的距离19、(1)充要条件;(2).【解析】(1)根据解一元二次不等式的方法,结合充分性、必要性的定义进行求解判断即可;(2)根据必要不充分条件的性质进行求解即可.【小问1详解】因为,所以,解得或,显然p是q的充要条件;【小问2详解】,当时,该不等式的解集为全体实数集,显然由,但不成立,因此p是q的充分不必要条件,不符合题意;当时,该不等式的解集为:,显然当时,不一定成立,因此p不是q的必要不充分条件,当时,该不等式解集为:,要想p是q的必要不充分条件,只需,而,所以,因此a的取值范围为:.20、(1)见解析;(2)2+4.【解析】(1)由抛物线的简单几何性质易得结果;(2)由|OA|=|OB|可知AB⊥x轴,又焦点F是△OAB的重心,则|OF|=|OM|=2.设A(3,m),代入y2=8x即可得到△OAB的周长【详解】(1)抛物线y2=8x的顶点、焦点、准线、对称轴、变量x的范围分别为(0,0),(2,0),x=-2,x轴,x≥0.(2)如图所示.由|OA|=|OB|可知AB⊥x轴,垂足为点M,又焦点F是△OAB的重心,则|OF|=|OM|.因为F(2,0),所以|OM|=|OF|=3.所以M(3,0).故设A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周长为2+4.【点睛】本题考查了抛物线简单性质的应用,解题关键利用好三角形重心的性质,属于中档题.21、(1);(2).【解析】(1)设(且),因为的图象过点,求得a的值,再根据函数f(x)是奇函数,利用f(0)=0即可求得n的值,得到f(x)的解析式,检验是奇函数即可;(2)将分式分离常数后,利用指数函数的性质可以判定f(x)在R上单调递减,进而结合奇函数的性质将不等式转化为二次不等式,根据二次函数的图象和性质,求得对于对任意的恒成立时a的取值范围即可.【详解】解:(1)由题意,设(且),因为的图象过点,可得,解得,即,所以,又因为为上的奇函数,可得,即,解得,经检验,符合,所以(2)由函数,可得在上单调递减,又因为为奇函数,所以,所以,即,又因为对任意的,不等式恒成立,令,即对任意的恒成立,可得,即,解得,所以实数的取值范围为【点睛】本题考查函数的奇偶性,指数函数及其性质和函数不等式恒成立问题,关键是利用函数的单调性和奇偶性将不等式转化为二次不等式在闭区间上恒成立问题,然后利用二次函数的图象转化为二次函数的端点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论