云南农业大学附属中学2025届高二数学第一学期期末复习检测试题含解析_第1页
云南农业大学附属中学2025届高二数学第一学期期末复习检测试题含解析_第2页
云南农业大学附属中学2025届高二数学第一学期期末复习检测试题含解析_第3页
云南农业大学附属中学2025届高二数学第一学期期末复习检测试题含解析_第4页
云南农业大学附属中学2025届高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南农业大学附属中学2025届高二数学第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用数学归纳法证明“”时,由假设证明时,不等式左边需增加的项数为()A. B.C. D.2.已知函数,则满足不等式的的取值范围是()A. B.C. D.3.已知双曲线C:的右焦点为,一条渐近线被圆截得的弦长为2b,则双曲线C的离心率为()A. B.C.2 D.4.太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是()①函数是圆O的一个太极函数②圆O的所有非常数函数的太极函数都不能为偶函数③函数是圆O的一个太极函数④函数的图象关于原点对称是为圆O的太极函数的充要条件A.①② B.①③C.②③ D.③④5.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.6.过抛物线C:的准线上任意一点作抛物线的切线,切点为,若在轴上存在定点,使得恒成立,则点的坐标为()A. B.C. D.7.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切8.数列的通项公式是()A. B.C. D.9.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.10.过双曲线的右焦点有一条弦是左焦点,那么的周长为()A.28 B.C. D.11.将的展开式按x的降幂排列,第二项不大于第三项,若,且,则实数x的取值范围是()A. B.C. D.12.在平面直角坐标系中,线段的两端点,分别在轴正半轴和轴正半轴上滑动,若圆上存在点是线段的中点,则线段长度的最小值为()A.4 B.6C.8 D.10二、填空题:本题共4小题,每小题5分,共20分。13.已知存在正数使不等式成立,则的取值范围_____14.若圆锥的轴截面是顶角为的等腰三角形,且圆锥的侧面积为,则该圆锥的体积为______.15.以双曲线的右焦点为圆心,为半径的圆与的一条渐近线交于两点,若,则双曲线的离心率为_________16.已知水平放置的是按“斜二测画法”得到如下图所示的直观图,其中,,则原的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD是矩形,M是PA的中点,N是BC的中点,平面ABCD,且,(1)求证:∥平面PCD;(2)求平面MBC与平面ABCD夹角的余弦值18.(12分)已知动点在椭圆:()上,,为椭圆左、右焦点.过点作轴的垂线,垂足为,点满足,且点的轨迹是过点的圆(1)求椭圆方程;(2)过点,分别作平行直线和,设交椭圆于点,,交椭圆于点,,求四边形的面积的最大值19.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?20.(12分)设数列的首项,(1)证明:数列是等比数列;(2)设且前项和为,求21.(12分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.22.(10分)已知各项均为正数的等比数列的前n项和为,且,(1)求数列的通项公式;(2)设,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】当成立,写出左侧的表达式,当时,写出对应的关系式,观察计算即可【详解】从到成立时,左边增加的项为,因此增加的项数是,故选:C2、A【解析】利用导数判断函数的单调性,根据单调性即可解不等式【详解】由则函数在上单调递增又,所以,解得故选:A3、A【解析】求出圆心到渐近线的距离,根据弦长建立关系即可求解.【详解】双曲线的渐近线方程为,即,则点到渐近线的距离为,因为弦长为,圆半径为,所以,即,因为,所以,则双曲线的离心率为.故选:A.4、B【解析】①③可以通过分析奇偶性和结合图象证明出符合要求,②④可以举出反例.【详解】是奇函数,且与圆O的两交点坐标为,能够将圆O的周长和面积同时等分为两个部分,故符合题意,①正确;同理函数是圆O的一个太极函数,③正确;例如,是偶函数,也能将将圆O的周长和面积同时等分为两个部分,故②错误;函数的图象关于原点对称不是为圆O的太极函数的充要条件,例如为奇函数,但不满足将圆O的周长和面积同时等分为两个部分,所以④错误;故选:B5、B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.6、D【解析】设切点,点,联立直线的方程和抛物线C的准线方程可得,将问题转化为对任意点恒成立,可得,解出,从而求出答案【详解】设切点,点由题意,抛物线C的准线,且由,得,则直线的方程为,即,联立令,得由题意知,对任意点恒成立,也就是对任意点恒成立因为,,则,即对任意实数恒成立,所以,即,所以,故选:D【点睛】一般表示抛物线的切线方程时可将抛物线方程转化为函数解析式,可利用导数的几何意义求解切线斜率,再代入计算.7、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.8、C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.9、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C10、C【解析】根据双曲线方程得,,由双曲线的定义,证出,结合即可算出△的周长【详解】双曲线方程为,,根据双曲线的定义,得,,,,相加可得,,,因此△的周长,故选:C11、A【解析】按照二项展开式展开表示出第二项第三项,解不等式即可.【详解】由二项展开式,第二项为:,第三项为:,依题意,两边约去得到,即,由知,则,同时约去得到.故选:A.12、C【解析】首先求点的轨迹,将问题转化为两圆有交点,即根据两圆的位置关系,求参数的取值范围.【详解】设,,的中点为,则,故点的轨迹是以原点为圆心,为半径的圆,问题转化为圆与圆有交点,所以,,即,解得:,所以线段长度的最小值为.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、(1,1)【解析】存在性问题转化为最大值,运用均值不等式,求出的最大值,转化成解对数不等式,进而解出【详解】解:∵,由于,则,∴,当且仅当时,即:时,∴有最大值,又存在正数使不等式成立,则,即,∴,即的取值范围为:.故答案为:【点睛】本题考查均值不等式的应用和对数不等式的解法,还涉及存在性问题,考查化简计算能力14、【解析】设圆锥的高为,可得出圆锥的母线长为,以及圆锥的底面半径为,利用圆锥的侧面积公式求出的值,再利用锥体的体积公式可求得结果.【详解】设圆锥的高为,由于圆锥的轴截面是顶角为的等腰三角形,则轴截面三角形的底角为,故该圆锥的母线长为,底面半径为,圆锥的侧面积为,可得,因此,该圆锥的体积为.故答案为:.15、【解析】由题意可得,化简整理得到,进而可求出结果.【详解】因为双曲线的一个焦点到其一条渐近线为,所有由题意可得,即,则,所以离心率,故答案为:.16、【解析】根据直观图画出原图,再根据三角形面积公式计算可得.【详解】解:依题意得到直观图的原图如下:且,所以故答案为:【点睛】本题考查斜二测画法中原图和直观图面积之间的关系,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)【解析】(1)取PD的中点E,连接ME,CE,易证四边形是平行四边形,得到,再利用线面平行的判定定理证明;(2)建立空间直角坐标系,求得平面MBC的一个法向量,易知平面ABCD的一个法向量为:,由求解.【小问1详解】证明:如图所示:取PD的中点E,连接ME,CE,因为底面ABCD是矩形,M是PA的中点,N是BC的中点,所以,所以四边形是平行四边形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小问2详解】建立如图所示空间直角坐标系:则,所以,设平面MBC的一个法向量为,则,即,令,得,易知平面ABCD的一个法向量为:,所以,所以平面MBC与平面ABCD的夹角的余弦值为.18、(1);(2)【解析】(1)设点和,由题意可得点的轨迹方程,将点Q的坐标代入T的方程计算出即可;(2)设的方程,和,联立椭圆方程并消元得到关于y的一元二次方程,根据韦达定理得到,进而求出和,根据平行线间的距离公式可得与的距离,得出所求四边形面积的表达式,结合换元法和基本不等式化简求值即可.【详解】解:(1)设点,,则点,,,∵,∴,∴,∵点在椭圆上,∴,即为点的轨迹方程又∵点的轨迹是过的圆,∴,解得,所以椭圆的方程为(2)由题意,可设的方程为,联立方程,得设,,则,且,所以,同理,又与的距离为,所以,四边形的面积为,令,则,且,当且仅当,即时等号成立所以,四边形的面积最大值为19、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m320、(1)证明见解析;(2).【解析】(1)由已知变形得出,即可证得结论成立;(2)计算,利用并项求和法可求得.【小问1详解】证明:对任意的,,则,且,故数列为等比数列,且该数列的首项为,公比也为,故.【小问2详解】解:,所以,,因此,.21、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.

(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.

(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.

(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.005+0.01)=0.85,

∵该校高一年级共有学生640人,

∴由样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人.

(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,

成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.

若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,

则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),

(C,F),(D,E),(D,F),(E,F)共15种.

如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,

那么这两名学生的数学成绩之差的绝对值一定不大于10.

如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,

那么这

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论