版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省威海市2025届高二数学第一学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在各项均为正数等比数列中,若成等差数列,则=()A. B.C. D.2.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.103.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20224.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切5.某企业为节能减排,用万元购进一台新设备用于生产.第一年需运营费用万元,从第二年起,每年运营费用均比上一年增加万元,该设备每年生产的收入均为万元.设该设备使用了年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则等于()A. B.C. D.6.两条平行直线与之间的距离为()A. B.C. D.7.已知,则下列不等式一定成立的是()A B.C. D.8.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.209.设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5 B.C. D.910.某综合实践小组设计了一个“双曲线型花瓶”.他们的设计思路是将某双曲线的一部分(图1中A,C之间的曲线)绕其虚轴所在直线l旋转一周,得到花瓶的侧面,花瓶底部是平整的圆面,如图2.该小组给出了图1中的相关数据:,,,,,其中B是双曲线的一个顶点.小组中甲、乙、丙、丁四位同学分别用不同的方法估算了该花瓶的容积(忽略瓶壁和底部的厚度),结果如下表所示学生甲乙丙丁估算结果()其中估算结果最接近花瓶的容积的同学是()(参考公式:,,)A.甲 B.乙C.丙 D.丁11.双曲线型自然通风塔外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B.C. D.12.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线经过点,则__________.14.桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球15.在等比数列中,若,,则_____16.如图三角形数阵:123456789101112131415……按照自上而下,自左而右的顺序,2021位于第i行的第j列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)若不等式的解集为,求实数的取值范围.18.(12分)如图,在四棱锥S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱锥S-ABCD的侧面积;(2)求平面SCD与平面SAB的夹角的余弦值.19.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.20.(12分)设函数(1)求在处的切线方程;(2)求在上的最大值与最小值21.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.22.(10分)设全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”的充分条件,求a的取值范围;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等差中项的定义以及等比数列的通项公式即可求解.【详解】设等比数列的公比为,∵成等差数列,∴,即,解得或(舍去),∴,故选:.2、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.3、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C4、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.5、D【解析】设该设备第年的营运费为万元,利用为等差数列可求年平均盈利额,利用基本不等式可求其最大值.【详解】设该设备第年的营运费为万元,则数列是以2为首项,2为公差的等差数列,则,则该设备使用年的营运费用总和为,设第n年的盈利总额为,则,故年平均盈利额为,因为,当且仅当时,等号成立,故当时,年平均盈利额取得最大值4.故选:D.【点睛】本题考查等差数列在实际问题中的应用,注意根据题设条件概括出数列的类型,另外用基本不等式求最值时注意检验等号成立的条件.6、D【解析】由已知有,所以直线可化为,利用两平行直线距离公式有,选D.点睛:本题主要考查两平行直线间的距离公式,属于易错题.在用两平行直线距离公式时,两直线中的系数要相同,不然不能用此公式计算7、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B8、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.9、B【解析】由双曲线的的定义可得,于是将问题转化为求的最小值,由得出答案.【详解】设双曲线的由焦点为,且点A在双曲线的两支之间.由双曲线的定义可得,即所以当且仅当三点共线时,取得等号.故选:B10、D【解析】根据几何体可分割为圆柱和曲边圆锥,利用圆柱和圆锥的体积公式对几何体的体积进行估计即可.【详解】可将几何体看作一个以为半径,高为的圆柱,再加上两个曲边圆锥,其中底面半径分别为,,高分别为,,,,所以花瓶的容积,故最接近的是丁同学的估算,故选:D11、A【解析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.第II卷12、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将点代入抛物线方程即可得出答案.【详解】解:因为抛物线经过点,所以,即.故答案为:2.14、4【解析】根据题意,由游戏规则,结合余数的性质,分析可得答案【详解】解:根据题意,第一次该拿走4个球,以后的取球过程中,对方取个,自己取个,由于,则自己一定可以取到第100个球.故答案为:415、【解析】根据等比数列下标和性质计算可得;【详解】解:∵在等比数列中,,∴原式故答案为:【点睛】本题考查等比数列的性质的应用,属于基础题.16、69【解析】由图可知,第行有个数,求出第行的最后一个数,从而可分析计算出,即可得出答案.【详解】解:由图可知,第行有个数,第行最后一个数为,因为,所以第行的最后一个数为2016,所以2021位第行,即,又,所以2021位第行第5列,即,所以.故答案为:69.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)将不等式分解因式,即可求得不等式解集;(2)根据不等式解集,考虑其对应二次函数的特征,即可求出参数的范围.【小问1详解】当时,即,也即,则,解得或,故不等式解集为.【小问2详解】不等式的解集为,即的解集为,也即的解集为,故其对应二次函数的,解得.故实数的取值范围为:.18、(1)(2)【解析】(1)根据垂直关系依次求解每个侧面三角形边长和面积即可得解;(2)建立空间直角坐标系,利用向量法求解.小问1详解】由题可得:,则,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交线,所以BC⊥平面SAB,BC⊥BS,,所以四棱锥的侧面积【小问2详解】以A为原点,建立空间直角坐标系如图所示:设平面SCD的法向量,,取所以取为平面SAB的的法向量所以平面SCD与平面SAB的夹角的余弦值.19、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增20、(1)(2),【解析】(1)对函数求导,然后求出,,运用点斜式即可求出切线方程;(2)利用导数研究出函数在区间的单调性,即可求出函数在区间上的最大值与最小值【小问1详解】,,,所以在点处的切线方程为,即.【小问2详解】,因为,所以与同号,令则,由,得,此时为减函数,由,得,此时为增函数,则,故,在单调递增,所以,21、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定义,B集合解不等式即可,然后由交集定义即可得结论;(2)若“”是“”的必要不充分条件,说明且,然后根据集合关系求解.详解:(1),.则(2),因为“”是“”的必要不充分条件,所以且.由,得,解得.经检验,当时,成立,故实数的取值范围是.点睛:考查定义域,解不等式,交集的定义以及必要不充分条件,正确求解集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度知识产权保护与维权合同:知识产权公司与企业之间的合同2篇
- 2024年度旅游业务合作与授权合同
- 财务部课件教学课件
- 2024年度物业买卖合同及附属设施转让协议4篇
- 2024年度联合推广合同共同宣传品牌与产品
- 2024年度汽车行业人才猎头服务合同4篇
- 《秒的认识》课件
- 2024年度电动伸缩门生产设备采购与租赁合同2篇
- 《互联网应用经分》课件
- 2024年度租赁合同:某企业与房东之间的办公场地租赁
- 河大版信息技术小学四年级上册教案全册
- 药学科研选题及实践经验PPT课件
- 随访平台解决方案.docx
- 中石油项目建议书写作模板
- 二层式升降横移自动立体车库结构设计(机械CAD图纸)
- 超市值班经理制度
- 关于爱好的中考作文800字5篇
- 太阳能飞机PPT优秀课件
- 8个干细胞药物
- 24 供应商(合作伙伴)反恐评估表
- 施工现场项目管理人员到岗履职情况检查表
评论
0/150
提交评论