版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省文登市大水泊中学2025届高一上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知奇函数fx在R上是增函数,若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b2.设命题,则为A. B.C. D.3.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.4.关于函数的叙述中,正确的有()①的最小正周期为;②在区间内单调递增;③是偶函数;④的图象关于点对称.A.①③ B.①④C.②③ D.②④5.给出下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若,则与的终边相同;④若,是第二或第三象限的角.其中正确的命题个数是()A.1 B.2C.3 D.46.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),与死亡年数之间的函数关系式为(其中为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的,则可推断该文物属于()参考数据:参考时间轴:A.宋 B.唐C.汉 D.战国7.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y(单位:万元)与处理量x(单位:吨)之间的函数关系可近似表示为,当处理量x等于多少吨时,每吨的平均处理成本最少()A.120 B.200C.240 D.4008.设函数与的图象的交点为,,则所在的区间是A. B.C. D.9.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则10.已知集合则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边过点,则___________.12.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象13.已知函数的值域为,则实数的取值范围是________14.函数f(x)=log2(x2-1)的单调递减区间为________15.已知直线与直线的倾斜角分别为和,则直线与的交点坐标为__________16.已知函数f(x)=lg(x2+2ax-5a)在[2,+∞)上是增函数,则a的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数(1)求的值;(2)判断的单调性,并用定义证明;(3)解不等式18.已知线段AB的端点A的坐标为,端点B是圆:上的动点.(1)求过A点且与圆相交时的弦长为的直线的方程(2)求线段AB中点M的轨迹方程,并说明它是什么图形19.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.20.某学校有1200名学生,随机抽出300名进行调查研究,调查者设计了一个随机化装置,这是一个装有大小、形状和质量完全相同的10个红球,10个绿球和10个白球的袋子.调查中有两个问题:问题1:你的阳历生日月份是不是奇数?问题2:你是否抽烟?每个被调查者随机从袋中摸出1个球(摸出后再放回袋中).若摸到红球就如实回答第一个问题,若摸到绿球,则不回答任何问题;若摸到白球,则如实回答第二个问题.所有回答“是”的调查者只需往一个盒子中放一个小石子,回答“否”的被调查者什么也不用做.最后收集回来53个小石子,估计该学校吸烟的人数有多少?21.已知(1)求的最小正周期;(2)将的图像上的各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图像向右平移个单位,得到函数的图像,求在上的单调区间和最值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意:a=f-且:log2据此:log2结合函数的单调性有:flog即a>b>c,c<b<a.本题选择C选项.【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.2、C【解析】特称命题否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.3、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目4、C【解析】应用差角余弦公式、二倍角正余弦公式及辅助角公式可得,再根据正弦型函数的性质,结合各项描述判断正误即可.【详解】,∴最小正周期,①错误;令,则在上递增,显然当时,②正确;,易知为偶函数,③正确;令,则,,易知的图象关于对称,④错误;故选:C5、A【解析】根据题意,对题目中的命题进行分析,判断正误即可.【详解】对于①,根据任意角的概念知,第二象限角不一定大于第一象限角,①错误;对于②,根据角的定义知,不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关,②正确;对于③,若,则与的终边相同,或关于轴对称,③错误;对于④,若,则是第二或第三象限的角,或终边在负半轴上,④错误;综上,其中正确命题是②,只有个.故选:【点睛】本题考查真假命题的判断,考查三角函数概念,属于基础题.6、D【解析】根据给定条件可得函数关系,取即可计算得解.【详解】依题意,当时,,而与死亡年数之间的函数关系式为,则有,解得,于是得,当时,,于是得:,解得,由得,对应朝代为战国,所以可推断该文物属于战国.故选:D7、D【解析】先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分和分析讨论求出其最小值即可【详解】由题意得二氧化碳每吨的平均处理成本为,当时,,当时,取得最小值240,当时,,当且仅当,即时取等号,此时取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D8、A【解析】设,则,有零点的判断定理可得函数的零点在区间内,即所在的区间是.选A9、C【解析】根据空间中直线与平面,平面与平面的位置关系即得。【详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【点睛】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。10、D【解析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.12、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;13、【解析】将题意等价于的值域包含,讨论和结合化简即可.【详解】解:要使函数的值域为则的值域包含①当即时,值域为包含,故符合条件②当时综上,实数的取值范围是故答案为:【点睛】一元二次不等式常考题型:(1)一元二次不等式在上恒成立问题:解决此类问题常利用一元二次不等式在上恒成立的条件,注意如果不等式恒成立,不要忽略时的情况.(2)在给定区间上的恒成立问题求解方法:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).14、【解析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为15、【解析】因为直线与直线的倾斜角分别为和,所以,联立与可得,,直线与的交点坐标为,故答案为.16、【解析】利用对数函数的定义域以及二次函数的单调性,转化求解即可【详解】解:函数f(x)=lg(x2+2ax﹣5a)在[2,+∞)上是增函数,可得:,解得a∈[﹣2,4)故答案为[﹣2,4)【点睛】本题考查复合函数的单调性的应用,考查转化思想以及计算能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调递减,证明见解析(3)【解析】(1)根据奇函数性质求解即可;(2)根据定义法严格证明单调性,注意式子正负的判断即可求解;(3)根据奇函数性质化简不等式得,再根据函数单调性得到,代入函数解不等式即可求解.【小问1详解】因为为奇函数且的定义域为,所以由奇函数性质得,解得,当时,,,即,符合题意.【小问2详解】在上单调递减,证明如下:由(1)知,,,时,,因为,所以,,所以,即在上单调递减【小问3详解】因为,所以,因为为奇函数,,所以,又因为在上单调递减,所以,即,所以,即,解得,即不等式的解集为18、(1)或;(2)点M的轨迹是以(4,2)为圆心,半径为1的圆.【解析】⑴设直线的斜率为,求得直线的方程,再根据与圆相交的弦长为,求得圆心到直线的距离,求出即可得到直线的方程;⑵设出的坐标,确定动点之间坐标的关系,利用在圆上,可得结论;解析:(1)根据题意设直线的斜率为k,则直线的方程为,且与圆相交的弦长为,所以圆心到直线的距离为解得所以直线的方程为或(2)设∵M是线段AB的中点,又A(4,3)∴得又在圆上,则满足圆的方程∴整理得为点M的轨迹方程,点M的轨迹是以(4,2)为圆心,半径为1的圆点睛:本题考查了直线与圆的位置关系,并求出点的轨迹方程,在计算轨迹问题时的方法:用未知点坐标表示已知点坐标,然后代入原解析式即可求出关于动点的轨迹方程19、(1);(2).【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解【详解】(1)由题意,函数,满足,解得,即函数的定义域为(2)由,设,则表示开口向下,对称轴的方程为,所以在上为单调递增函数,在单调递减,根据复合函数的单调性,可得因为,函数在为单调递增函数,在单调递减,所以,解得;故实数的值为【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题20、36【解析】由题意可知,每个学生从口袋中摸出1个红球,绿球,白球的概率都是,从而可得回答各个问题以及不回答问题的人数,进而可得回答第一个问题是“是”的人数,根据石子数得出100人中抽烟的人数,从而估计出该学校吸烟的人数.【详解】由题意可知,每个学生从口袋中摸出1个红球,绿球,白球的概率都是.即我们期望大约有人回答了第一个问题,人不回答任何问题,人回答了第二个问题.在回答阳历生日月份是奇数的概率是.因而回答第一个问题的100人中,大约有50人回答了“是”.所以我们能推出,在回答第二个问题的100人中,大约有3人回答了“是”.即估计该学校大约有3%的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度云南省高校教师资格证之高等教育法规真题练习试卷B卷附答案
- 2024年医疗、外科及兽医用器械项目资金需求报告代可行性研究报告
- 赣南师范大学《钢琴》2021-2022学年第一学期期末试卷
- 赣南师范大学《体育绘图》2022-2023学年第一学期期末试卷
- 阜阳师范大学《通信工程制图》2022-2023学年第一学期期末试卷
- 福建师范大学《油画基础》2021-2022学年第一学期期末试卷
- 福建师范大学《数字信号处理》2023-2024学年第一学期期末试卷
- 福建师范大学《环境资源法》2022-2023学年第一学期期末试卷
- 福建师范大学《光学实验》2022-2023学年第一学期期末试卷
- 中国手持卫星通信终端市场发展现状与投资价值分析报告2024-2030年
- 冠心病患者的疼痛管理
- 2023年甘肃庆阳市林业和草原局招聘专职聘用制护林员57人笔试参考题库(共500题)答案详解版
- 实施预防式管理:预防潜在问题的发生
- 《埃隆·马斯克传》导读
- 《第9课中西古典园林》教学设计(部级优课)-美术教案
- 建设工程消防验收技术服务项目方案(技术标 )
- MOOC创新创业与管理基础(东南大学)
- 莱州市梁郭镇大郎家金矿矿山地质环境保护与土地复垦方案
- 人工成本对建筑工程造价影响因素分析
- XX医院高警示药品(高危药品)目录
- 拆除桥梁专项施工方案范本
评论
0/150
提交评论