版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省扬州市安宜高中、汜水高中联考数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边经过点,则的值为()A.11 B.10C.12 D.132.若函数的定义域为,则为偶函数的一个充要条件是()A.对任意,都有成立;B.函数的图像关于原点成中心对称;C.存在某个,使得;D.对任意给定的,都有.3.已知函数是定义在上的偶函数,当时,,则函数的零点个数为()A.20 B.18C.16 D.144.如图中,分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线是异面直线的图形有()A.①③ B.②③C.②④ D.②③④5.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.6.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为17.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.48.已知角的终边过点,则等于()A.2 B.C. D.9.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.10.下列各组函数与的图象相同的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.求值:__________.12.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.13.函数定义域为________.(用区间表示)14.若,,.,则a,b,c的大小关系用“”表示为________________.15.已知函数,若是的最大值,则实数t的取值范围是______16.在正方形ABCD中,E是线段CD的中点,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)若函数,求函数零点.18.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格(单位:元)与时间x(单位:天)的函数关系近似满足,日销售量(单位:件)与时间x(单位:天)的部分数据如下表所示:x10152025305055605550(1)给出以下四个函数模型:①;②;③;④请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间x的变化关系,并求出该函数的解析式;(2)设该工艺品的日销售收入为(单位:元),求的最小值19.已知函数,且求函数的定义域;求满足实数x的取值范围20.已知函数求函数的最小正周期与对称中心;求函数的单调递增区间21.已知函数其中.(1)当a=0时,求f(x)的值域;(2)若f(x)有两个零点,求a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论2、D【解析】利用偶函数的定义进行判断即可【详解】对于A,对任意,都有成立,可得为偶函数且为奇函数,而当为偶函数时,不一定有对任意,,所以A错误,对于B,当函数的图像关于原点成中心对称,可知,函数为奇函数,所以B错误,对于CD,由偶函数的定义可知,对于任意,都有,即,所以当为偶函数时,任意,,反之,当任意,,则为偶函数,所以C错误,D正确,故选:D3、C【解析】解方程,得或,作出的图象,由对称性只要作的部分,观察的图象与直线和直线的交点的个数即得【详解】,或根据函数解析式以及偶函数性质作图象,当时,.,是抛物线的一段,当,由的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y轴右侧的图象,根据对称轴可得左侧的结论,时,,的图象与直线和的交点个数,分别有3个和5个,∴函数g(x)的零点个数为,故选:C【点睛】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论4、C【解析】对于①③可证出,两条直线平行一定共面,即可判断直线与共面;对于②④可证三点共面,但平面;三点共面,但平面,即可判断直线与异面.【详解】由题意,可知题图①中,,因此直线与共面;题图②中,三点共面,但平面,因此直线与异面;题图③中,连接,则,因此直线与共面;题图④中,连接,三点共面,但平面,所以直线与异面.故选C.【点睛】本题主要考查异面直线的定义,属于基础题.5、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C6、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D7、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C8、B【解析】由正切函数的定义计算【详解】由题意故选:B9、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B10、B【解析】根据相等函数的定义即可得出结果.【详解】若函数与的图象相同则与表示同一个函数,则与的定义域和解析式相同.A:的定义域为R,的定义域为,故排除A;B:,与的定义域、解析式相同,故B正确;C:的定义域为R,的定义域为,故排除C;D:与的解析式不相同,故排除D.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用诱导公式一化简,再求特殊角正弦值即可.【详解】.故答案为:.12、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.13、【解析】由对数真数大于0,偶次根式被开方式大于等于0,列出不等式组求解即可得答案.【详解】解:由,得,所以函数的定义域为,故答案为:.14、cab【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【详解】,即;,即;,即,综上可得,故答案为:.【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.15、【解析】先求出时最大值为,再由是的最大值,解出t的范围.【详解】当时,,由对勾函数的性质可得:在时取得最大值;当时,,且是的最大值,所以,解得:.故答案为:16、【解析】详解】由图可知,,所以))所以,故,即,即得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)为奇函数(3)【解析】(1)要使函数有意义,必须满足,从而得到定义域;(2)利用奇偶性定义判断奇偶性;(3)函数的零点即方程的根.即的根,又为奇函数,所以.易证:在定义域上为增函数,∴由得,从而解得函数的零点.试题解析:(1)要使函数有意义,必须满足,∴,因此,的定义域为.(2)函数为奇函数.∵的定义域为,对内的任意有:,所以,为奇函数.(3)函数的零点即方程的根.即的根,又为奇函数,所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定义域上为增函数,∴由得解得或,验证当时,不符合题意,当时,符合题意,所以函数的零点为.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.18、(1)选择模型②:,;(2)441.【解析】(1)根据表格数据的变化趋势选择函数模型,再将数据代入解析式求参数值,即可得解析式.(2)由题设及(1)所得解析式求的解析式,再由分段函数的性质,结合分式型函数最值的求法求的最小值【小问1详解】由表格数据知,当时间x变换时,先增后减,而①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,,所以日销售量与时间x的变化的关系式为【小问2详解】由(2)知:,所以,即,当,时,由基本不等式,可得,当且仅当时,即时等号成立,当,时,为减函数,所以函数的最小值为,综上,当时,函数取得最小值44119、(1);(2)见解析.【解析】由题意可得,,解不等式可求;由已知可得,结合a的范围,进行分类讨论求解x的范围【详解】(1)由题意可得,,解可得,,函数的定义域为,由,可得,时,,解可得,,时,,解可得,【点睛】本题主要考查了对数函数的定义域及利用对数函数单调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题20、(1)最小正周期,对称中心为;(2)【解析】直接利用三角函数关系式的恒等变变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期和对称中心;直接利用整体思想求出函数的单调递增区间【详解】函数,,,所以函数的最小正周期为,令:,解得:,所以函数的对称中心为由于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《市政造价员资料》课件
- 职业道德与法律导言
- 《次北固山下王湾》课件
- 艾灸疗法课件
- 学徒时间协议书范本(2篇)
- 2023年四川省达州市公开招聘警务辅助人员(辅警)笔试自考练习卷二含答案
- 2024年湖南省湘潭市公开招聘警务辅助人员(辅警)笔试经典练习卷(A)含答案
- 2021年四川省阿坝自治州公开招聘警务辅助人员(辅警)笔试经典练习卷(A)含答案
- 2022年广东省东莞市公开招聘警务辅助人员(辅警)笔试摸底测试(1)卷含答案
- 2024山林生态修复与植被种植承包合同书典范3篇
- 《水电厂标识系统(KKS)编码导则》
- 探秘地球智慧树知到期末考试答案2024年
- 2023年医科医学计算机应用题库
- (正式版)SHT 3070-2024 石油化工管式炉钢结构设计规范
- 发生心脏骤停的应急预案
- 咸阳中心医院门诊综合楼装修改造项目施工组织设计
- 全国高考数学新课标Ⅱ卷第11题说题课件
- 2024年荆州市产业投资发展集团有限公司招聘笔试参考题库附带答案详解
- 冲上云霄-飞机鉴赏智慧树知到期末考试答案2024年
- 建筑防雷与接地-等电位连接
- 2024行政法与行政诉讼法论述题
评论
0/150
提交评论