浙江省温州市翔升2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第1页
浙江省温州市翔升2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第2页
浙江省温州市翔升2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第3页
浙江省温州市翔升2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第4页
浙江省温州市翔升2024年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页浙江省温州市翔升2024年九年级数学第一学期开学质量跟踪监视模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,Rt△ABC中,AB=9,BC=6,∠B=90˚,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.6 B.5 C.4 D.32、(4分)把直线a沿水平方向平移4cm,平移后的像为直线b,则直线a与直线b之间的距离为()A.等于4cm B.小于4cmC.大于4cm D.小于或等于4cm3、(4分)如图,在平面直角坐标系中,点A、B的坐标分别是(4,0)、(0,3),点O'在直线y=2x(x≥0)上,将△AOB沿射线OO'方向平移后得到△A'O'B’.若点O'的横坐标为2,则点A'的坐标为()A.(4,4) B.(5,4) C.(6,4) D.(7,4)4、(4分)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③5、(4分)在圆的周长公式中,常量是()A.2 B. C. D.6、(4分)如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23 B.24 C.25 D.无答案7、(4分)为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l28、(4分)下列手机软件图标中,是轴对称图形的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是______________10、(4分)已知菱形有一个锐角为60°,一条对角线长为4cm,则其面积为_______cm1.11、(4分)当x分别取值,,,,,1,2,,2007,2008,2009时,计算代数式的值,将所得的结果相加,其和等于______.12、(4分)某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为90分、80分、85分,则小明的数学期末总评成绩为________分.13、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.三、解答题(本大题共5个小题,共48分)14、(12分)计算:(1)﹣;(2)15、(8分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.16、(8分)如图,点C,D在线段AB上,△PCD是等边三角形,△ACP∽△PDB,(1)请你说明CD2=AC•BD;(2)求∠APB的度数.17、(10分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?18、(10分)计算:2﹣1+|﹣1|﹣(π﹣1)0B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若,则__________.20、(4分)如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.21、(4分)如图,,的垂直平分线交于点,若,则下列结论正确是______(填序号)①②是的平分线③是等腰三角形④的周长.22、(4分)分解因式:__________23、(4分)顺次连接等腰梯形各边中点所得的四边形是_____.二、解答题(本大题共3个小题,共30分)24、(8分)矩形ABCD的边长AB=8,BC=10,MN经过矩形的中心O,且MN=10;沿MN将矩形剪开(如图1),拼成菱形EFGH(如图2).试求:(1)CN的长度;(2)菱形EFGH的两条对角线EG、FH的长度.25、(10分)如图,在平行四边形ABCD中,DE,BF分别是∠ADC,∠ABC的角平分线.求证:四边形DEBF是平行四边形.26、(12分)先阅读下面的村料,再分解因式.要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得.这时,由于中又有公困式,于是可提公因式,从而得到,因此有.这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.请用上面材料中提供的方法因式分解:请你完成分解因式下面的过程______;.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】解:设BN=x,由折叠的性质可得DN=AN=9-x,

∵D是BC的中点,

∴BD=3,

在Rt△NBD中,x2+32=(9-x)2,

解得x=1.

即BN=1.

故选:C.此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.2、D【解析】试题分析:本题中如果平移的方向是垂直向上或垂直向下,则平移后的两直线之间的距离为4cm;如果平移的方向不是垂直向上或垂直向下,则平移后的两直线之间的距离小于4cm;故本题选D.3、C【解析】

利用一次函数图象上点的坐标特征可得出点O′的坐标,再利用平移的性质结合点A的坐标可得出点A′的坐标,即可解答.【详解】解:当x=2时,y=2x=4,

∴点O′的坐标为(2,4).

∵点A的坐标为(4,0),

∴点A′的坐标为(4+2,0+4),即(6,4).

故选:C.本题考查了一次函数图象上点的坐标特征以及坐标与图形的变化-平移,利用一次函数图象上点的坐标特征求出点O′的坐标是解题的关键.4、C【解析】

根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【详解】①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值5、C【解析】

根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.【详解】周长公式中,常量为,故选C.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.6、B【解析】

根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,1mn即四个直角三角形的面积和,从而不难求得(m+n)1.【详解】(m+n)1=m1+n1+1mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=14.故选B.本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.7、A【解析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是1,1,那么这组数据的中位数1.故选:A.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.8、C【解析】

根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题(本大题共5个小题,每小题4分,共20分)9、y=-x+1【解析】

根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.【详解】∵矩形ABCD中,B(3,1),∴C(0,1),设直线L的解析式为y=kx+b,则,解得∴直线L的解析式为:y=-x+1.故答案为:y=-x+1.本题考查了矩形的性质,图形与坐标,以及用待定系数法确定函数的解析式,待定系数法是常用的一种解题方法.10、或【解析】

首先根据题意画出图形,由菱形有一个锐角为60°,可得△ABD是等边三角形,然后分别从较短对角线长为4cm与较长对角线长为4cm,去分析求解即可求得答案.【详解】解:∵四边形ABCD是菱形,∠BAD=60°,

∴AB=AD,AC⊥BD,AO=OC,BO=OD,

∴△ABD是等边三角形,①BD=4cm,则OB=1cm,∴AB=BD=4cm;

∴OA==(cm),

∴AC=1OA=4(cm),

∴S菱形ABCD=AC•BD=(cm1);

②AC=4cm.

∵四边形ABCD是菱形,

∴AO=1cm,∠BAO=30°,

∴AB=1OB,∴,即,

∴OB=(cm),BD=cm

∴S菱形ABCD=AC•BD=(cm1);

综上可得:其面积为cm1或cm1.

故答案为:或.本题考查菱形的性质、等边三角形的判定与性质以及勾股定理.解题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.11、1【解析】

先把和代入代数式,并对代数式化简,得到它们的和为1,然后把代入代数式求出代数式的值,再把所得的结果相加求出所有结果的和.【详解】因为,即当x分别取值,为正整数时,计算所得的代数式的值之和为1;而当时,.因此,当x分别取值,,,,,1,2,,2117,2118,2119时,计算所得各代数式的值之和为1.故答案为:1.本题考查的是代数式的求值,本题的x的取值较多,并且除外,其它的数都是成对的且互为倒数,把互为倒数的两个数代入代数式得到它们的和为1,这样计算起来就很方便.12、1【解析】

按统计图中各部分所占比例算出小明的期末数学总评成绩即可.【详解】解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=1(分).故答案为1.13、1.【解析】

∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.三、解答题(本大题共5个小题,共48分)14、(1)﹣;(2)13﹣4.【解析】

(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【详解】解:(1)原式=3﹣﹣2=﹣;(2)原式=5﹣4+4+(13﹣9)=9﹣4+4=13﹣4.本题考查了二次根式的运算,以及完全平方公式和平方差公式的运算,解题的关键是正确的运用运算法则进行运算.15、(1)见解析(2)(4,2)(3)(6,0)【解析】

(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则,解得∴直线PR为y=﹣x+3由y=0得,x=6∴R(6,0).本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.16、(1)见解析;(2)∠APB=120°.【解析】

(1)由△ACP∽△PDB,根据相似三角形的对应边成比例,可得AC:PD=PC:BD,又由△PCD是等边三角形,即可证得CD2=AC•BD;

(2)由△ACP∽△PDB,根据相似三角形对应角相等,可得∠A=∠BPD,又由△PCD是等边三角形,即可求得∠APB的度数.【详解】(1)证明:∵△ACP∽△PDB,∴AC:PD=PC:BD,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=CD=PD,∴CD2=AC•BD;(2)解:∵△ACP∽△PDB,∴∠A=∠BPD,∵△PCD是等边三角形,∴∠PCD=∠CPD=60°,∴∠PCD=∠A+∠APC=60°,∴∠APC+∠BPD=60°,∴∠APB=∠APC+∠CPD+∠BPD=120°.此题考查了相似三角形的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.17、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】

(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.

(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.18、【解析】

按顺序先分别进行负指数幂的运算、绝对值的化简、0指数幂的运算,然后再进行加减运算即可.【详解】2﹣1+|﹣1|﹣(π﹣1)0=+1﹣1=.本题考查了实数的运算,涉及了负指数幂、0指数幂等运算,熟练掌握各运算的运算法则是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.【详解】解:设a=2k,b=5k∴故答案为:.本题考查了比例的性质,属于基础知识,比较简单.20、1【解析】

根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12【详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12BD∴OD=12BD=4∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=1故答案为:1.主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.21、①②③④【解析】

由△ABC中,∠A=36°,AB=AC,根据等腰三角形的性质与三角形内角和定理,即可求得∠C的度数;又由线段垂直平分线的性质,易证得△ABD是等腰三角形,继而可求得∠ABD与∠DBC的度数,证得BD是∠ABC的平分线,然后由∠DBC=36°,∠C=72°,证得∠BDC=72°,易证得△DBC是等腰三角形,个等量代换即可证得④△BCD的周长=AB+BC.【详解】∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C==72°,故①正确;∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC-∠ABD=36°,∴∠ABD=∠DBC,∴BD是∠ABC的平分线;故②正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°-36°-72°=72°,∴∠BDC=∠C,∴BC=BD,∴△DBC是等腰三角形;故③正确;∵BD=AD,∴△BCD的周长=BD+BC+CD=AC+BC=AB+BC,故④正确;故答案为:①②③④.本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.22、【解析】

提取公因式,即可得解.【详解】故答案为:.此题主要考查对分解因式的理解,熟练掌握,即可解题.23、菱形【解析】

解:顺次连接等腰梯形各边中点所得的四边形是菱形,理由为:

已知:等腰梯形ABCD,E、F、G、H分别为AD、AB、BC、CD的中点,

求证:四边形EFGH为菱形.

证明:连接AC,BD,

∵四边形ABCD为等腰梯形,

∴AC=BD,

∵E、H分别为AD、CD的中点,

∴EH为△ADC的中位线,

∴EH=AC,EH∥AC,

同理FG=AC,FG∥AC,

∴EH=FG,EH∥FG,

∴四边形EFGH为平行四边形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论