版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页浙江省绍兴市新昌县2025届九上数学开学教学质量检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为()A.和 B. C. D.以上都不对2、(4分)能判定一个四边形是平行四边形的条件是()A.一组对角相等 B.两条对角线互相平分C.一组对边相等 D.两条对角线互相垂直3、(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为()A.3 B.1.5 C.2 D.4、(4分)如图,在中,,,,点在上,若四边形DEBC为菱形,则的长度为()A.7 B.9 C.3 D.45、(4分)已知:是整数,则满足条件的最小正整数为()A.2 B.3 C.4 D.56、(4分)已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60cm和38cm,则△ABC的腰长和底边BC的长分别是()A.22cm和16cm B.16cm和22cmC.20cm和16cm D.24cm和12cm7、(4分)用配方法解方程x2﹣8x+7=0,配方后可得()A.(x﹣4)2=9 B.(x﹣4)2=23C.(x﹣4)2=16 D.(x+4)2=98、(4分)如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是()A.1 B.4 C.3 D.2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是____小时.10、(4分)二次根式中,x的取值范围是________.11、(4分)已知一次函数的图象过点,那么此一次函数的解析式为__________.12、(4分)在菱形中,,若菱形的面积是,则=____________13、(4分)如图,是内的一点,,点分别在的两边上,周长的最小值是____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在正方形中,已知于.(1)求证:;(2)若,求的长.15、(8分)某学校计划在总费用元的限额内,租用汽车送名学生和名教师集体参加校外实践活动,为确保安全,每辆汽车上至少要有名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.(1)根据题干所提供的信息,确定共需租用多少辆汽车?(2)请你给学校选择一种最节省费用的租车方案.16、(8分)如图,在网格图中,平移使点平移到点,每小格代表1个单位。(1)画出平移后的;(2)求的面积.17、(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.18、(10分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=CD,求证:∠AEF=90°.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为_____.20、(4分)如图,直线与轴正半轴交于点,与轴交于点,将沿翻折,使点落在点处,点是线段的中点,射线交线段于点,若为直角三角形,则的值为__________.21、(4分)如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.22、(4分)如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于_____.23、(4分)若不等式组的解集是,则m的值是________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在边长为1个单位长度的小正方形组成的两个中,点都是格点.(1)将向左平移6个单位长度得到.请画出;(2)将绕点按逆时针方向旋转得到,请画出.25、(10分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O.(1)尺规作图:以OA、OD为边,作矩形OAED(不要求写作法,但保留作图痕迹);(2)若在菱形ABCD中,∠BAD=120°,AD=2,求所作矩形OAED的周长.26、(12分)阅读下面的解题过程,解答后面的问题:如图1,在平面直角坐标系xoy中,Ax1,y1,Bx2,解:分别过A,C做x轴的平行线,过B,C做y轴的平行线,两组平行线的交点如图1所示,设Cx0,y0,则由图1可知:x0=∴线段AB的中点C的坐标为x(应用新知)利用你阅读获得的新知解答下面的问题:(1)已知A-1,4,B3,-2,则线段(2)平行四边形ABCD中,点A,B,C的坐标分别为1,-4,0,2,5,6,利用中点坐标公式求点D的坐标。(3)如图2,点B6,4在函数y=12x+1的图象上,A5,2,C在x轴上,D在函数y=12x+1的图象上,以A,B,
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.【详解】∵矩形ABCD中BE是角平分线.∴∠ABE=∠EBC.∵AD∥BC.∴∠AEB=∠EBC.∴∠AEB=∠ABE.∴AB=AE.平分线把矩形的一边分成3cm和5cm.当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.故选A.本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.2、B【解析】
根据平行四边形的判定定理进行判断即可.【详解】A.两组对角分别相等的四边形是平行四边形,故本选项错误;B.两条对角线互相平分的四边形是平行四边形,故本选项正确;C.两组对边分别相等的四边形是平行四边形,故本选项错误;D.对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.本题考查平行四边形的判定,定理有:①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形.3、D【解析】
解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=.根据勾股定理得:,解得:x=2,∴EC=2,则S△AEC=EC•AD=.故选D.4、A【解析】
根据勾股定理得到AC==25,连接BD交AC于O,由菱形的性质得到BD⊥CE,BO=DO,EO=CO,求得CE=2OE=18,于是得到结论.【详解】解:连接BD,交AC于点O,在△ABC中,∠ABC=90°,AB=20,BC=15,
∴AC==25,
连接BD交AC于O,
∵四边形BCDE为菱形,
∴BD⊥CE,BO=DO,EO=CO,
∴BO===12,
∴OC==9,
∴CE=2OE=18,
∴AE=7,
故选:A.本题考查菱形的性质,三角形的面积公式,勾股定理,正确的识别图形是解题的关键.5、D【解析】试题解析:∵=,且是整数,∴2是整数,即1n是完全平方数,∴n的最小正整数为1.故选D.点睛:主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则.除法法则.解题关键是分解成一个完全平方数和一个代数式的积的形式.6、A【解析】
根据已知条件作出图像,连接BD,根据垂直平分线的性质可得BD=AD,可知两三角形的周长差为AB,结合条件可求出腰长,再由周长可求出BC,即可得出答案.【详解】如图,连接BD,∵D在线段AB的垂直平分线上,∴BD=AD,∴BD+DC+BC=AC+BC=38cm,且AB+AC+BC=60cm,∴AB=60-38=22cm,∴AC=22cm,∴BC=38-AC=38-22=16cm,即等腰三角形的腰为22cm,底为16cm,故选A.此题主要考查垂直平分线的性质,解题的关键是正确作出辅助线再来解答.7、A【解析】
首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:x2﹣8x+7=0,x2﹣8x=﹣7,x2﹣8x+16=﹣7+16,(x﹣4)2=9,故选:A.本题考查了解一元二次方程--配方法.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8、C【解析】试题分析:先由∠BAC=90°,AD⊥BC,∠B=∠B证得△ABD∽△CBA,再根据相似三角形的性质求得BD的长,即可求得结果.解:∵∠BAC=90°,AD⊥BC,∠B=∠B∴△ABD∽△CBA∴∵AB=2,BC=4∴,解得∴CD=BC-BD=3故选C.考点:相似三角形的判定和性质点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.二、填空题(本大题共5个小题,每小题4分,共20分)9、6.4【解析】试题分析:体育锻炼时间=(小时).考点:加权平均数.10、【解析】
根据二次根式有意义的条件进行求解即可得.【详解】根据题意,得,解得,,故答案为:.本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.11、【解析】
用待定系数法即可得到答案.【详解】解:把代入得,解得,所以一次函数解析式为.故答案为本题考查求一次函数解析式,解题的关键是熟练掌握待定系数法.12、【解析】
由菱形的性质得AO=CO=6cm,BO=DO,AC⊥BD,由菱形的面积可求BD的长,由勾股定理可求AB的长.【详解】解:如图,∵四边形ABCD是菱形∴AO=CO=6cm,BO=DO,AC⊥BD∵S菱形ABCD=×AC×BD=96∴BD=16cm∴BO=DO=8cm∴AB==10cm故答案为10cm本题考查了菱形的性质,掌握菱形的面积公式是解决本题的关键.13、【解析】
根据轴对称图形的性质,作出P关于OA、OB的对称点M、N,连接OM、ON、MN,根据两点之间线段最短得到MN即为△PQR周长的最小值,然后证明△MON为等腰直角三角形,利用勾股定理求出MN即可.【详解】解:分别作P关于OA、OB的对称点M、N,连接OM、ON,连接MN交OA、OB交于Q、R,则△PQR符合条件且△PQR的周长等于MN,由轴对称的性质可得:OM=ON=OP=10,∠MOA=∠POA,∠NOB=∠POB,∴∠MON=∠MOP+∠NOP=2∠AOB=90°,∴△MON为等腰直角三角形.∴MN=,所以△PQR周长的最小值为,故答案为:.此题考查了轴对称最短路径问题,等腰直角三角形的判定和性质以及勾股定理,根据题意构造出对称点,转化为直角三角形的问题是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)【解析】
(1)由正方形的性质可得BC=CD,∠B=∠BCD=90°,利用直角三角形中两个锐角互余以及垂直的定义证明∠BEC=∠CFD即可证明:△BCE≌△CDF;(2)由(1)可知:△BCE≌△CDF,所以CF=BE=2,由相似三角形的判定方法可知:△BCE∽HCF,利用相似三角形的性质:对应边的比值相等即可求出HF的长.【详解】(1)证明:在正方形中,∴,∵,∴,又∵,∴,∴;(2)解:∵∴,∵,∴,∴,在Rt△BCE中,BC=AB=6,BE=2,∴,∴;本题考查了正方形的性质、相似三角形的判定和性质以及全等三角形的判定和性质,题目的综合性很强,但难度不大.15、(1)确定共需租用6辆汽车;(2)最节省费用的租车方案是租用甲种客车辆,乙种客车辆.【解析】
(1)首先根据总人数个车座确定租用的汽车数量,关键要注意每辆汽车上至少要有名教师.(2)根据题意设租用甲种客车辆,共需费用元,则租用乙种客车辆,因此可列出方程,再利用不等式列出不等式组,即可解得x的范围,在分类计算费用,选择较便宜的.【详解】解:(1)由使名学生和名教师都有座位,租用汽车辆数必需不小于辆;每辆汽车上至少要有名教师,租用汽车辆数必需不大于6辆.所以,根据题干所提供的信息,确定共需租用6辆汽车.(2)设租用甲种客车辆,共需费用元,则租用乙种客车辆.6辆汽车载客人数为人=∴解得∴,或当时,甲种客车辆,乙种客车辆,当时,甲种客车辆,乙种客车辆,∴最节省费用的租车方案是租用甲种客车辆,乙种客车辆.本题主要考查不等式组的应用问题,关键在于根据题意设出合理的未知数,特别注意,要取整数解,确定利润最小.16、(1)详见解析;(2)【解析】
(1)根据题意知:A到D是相右平移6个方格,相下平移2个方格,即可画出C、B的对应点,连接即可;
(2)化为正方形减去3个三角形即可.【详解】(1)如图所示:△DEF即为所求;(2)本题主要考查对平移的性质,作图-平移变换等知识点的理解和掌握,能根据题意正确画出图形是解此题的关键.17、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780【解析】
(1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;(2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;(3)根据众数,平均数的定义即可得到结论;(4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的比例列式计算即可.【详解】(1)a=1﹣20%﹣30%﹣5%=45%;所抽查的学生人数为:3÷5%=60(人).故答案为:45%,60;(2)平均睡眠时间为8小时的人数为:60×30%=18(人);(3)这部分学生的平均睡眠时间的众数是7人,平均数7.2(小时);(4)1200名睡眠不足(少于8小时)的学生数1200=780(人).本题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解答本题的关键.18、证明见解析.【解析】试题分析:利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.试题解析:证明:∵ABCD为正方形,∴AB=BC=CD=DA,∠B=∠C=∠D=90°.设AB=BC=CD=DA=a.∵E是BC的中点,且CF=CD,∴BE=EC=a,CF=a.在Rt△ABE中,由勾股定理可得:AE1=AB1+BE1=a1,同理可得:EF1=EC1+FC1=a1,AF1=AD1+DF1=a1.∵AE1+EF1=AF1,∴△AEF为直角三角形,∴∠AEF=90°.点睛:本题考查了正方形的性质,勾股定理、勾股定理逆定理的运用,注意在正方形中的直角三角形的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、﹣1<m<【解析】
根据一次函数y=kx+b(k≠0)的图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:由一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,知m+1>0,且2m﹣3<0,解得,﹣1<m<.故答案为:﹣1<m<.本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.20、-1【解析】
根据一次函数解析式可得B点坐标为(0,),所以得出OB=,再由为直角三角形得出∠ADE为直角,结合是直角三角形斜边的中点进一步得出∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,所以△AOB为等腰直角三角形,所以OA长度为,进而得出A点坐标,将其代入解析式即可得出k的值.【详解】由题意得:B点坐标为(0,),∴OB=,∵在直角三角形AOB中,点是线段的中点,∴OD=BD=AD,又∵为直角三角形,∴∠OBD=∠B0D=45°,∠DOA=∠DAO=45°,∴△AOB为等腰直角三角形,∴OA=OB=,∴A点坐标为(,0),∴,解得k=-1.故答案为:-1.本题主要考查了一次函数与三角形性质的综合运用,熟练掌握相关概念是解题关键.21、【解析】
由从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,有三种取法,其中抽到九年级(1)班的有一种,所以恰好抽到九年级(1)班的概率是:.故答案为22、2【解析】
过F作AM的垂线交AM于D,通过证明S2=SRt△ABC;S3=SRt△AQF=SRt△ABC;S1=SRt△ABC,进而即可求解.【详解】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=SRt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=SRt△AQF=SRt△ABC.易证Rt△ABC≌Rt△EBN,∴S1=SRt△ABC,∴S1﹣S2+S3+S1=(S1+S3)﹣S2+S1=SRt△ABC﹣SRt△ABC+SRt△ABC=2﹣2+2=2,故答案是:2.本题考查正方形的性质及三角形全等的判定与性质,根据已知条件证得S2=SRt△ABC,S3=SRt△AQF=SRt△ABC,S1=SRt△ABC是解决问题的关键.23、2【解析】
分别求出每个不等式的解集,取共同部分,即可得到m的值.【详解】解:,解得:,∵不等式组的解集为:,∴;故答案为:2.本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.二、解答题(本大题共3个小题,共30分)24、(1)图见详解;(1)图见详解.【解析】
(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;
(1)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A1B1C1.【详解】解:(1)如图所示:△A1B1C1,即为所求;
(1)如图所示:△A1B1C1,即为所求.此题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建师范大学《小学班队原理与班主任工作》2022-2023学年第一学期期末试卷
- 福建师范大学《体育保健学》2022-2023学年第一学期期末试卷
- 福建师范大学《数字化教育资源设计与制作》2022-2023学年第一学期期末试卷
- 福建师范大学《设计基础》2023-2024学年第一学期期末试卷
- 福建师范大学《景观设计四》2022-2023学年第一学期期末试卷
- 福建师范大学《环境工程学科概论》2022-2023学年第一学期期末试卷
- 福建师范大学《公共管理应用写作》2023-2024学年第一学期期末试卷
- 智慧产业园区发展、运营及实践
- 虚拟现实调研报告
- 2024届深圳市重点中学高三5月阶段质量检测试题数学试题
- GB/T 10544-2022橡胶软管及软管组合件油基或水基流体适用的钢丝缠绕增强外覆橡胶液压型规范
- 幼儿园《电从哪里来》教案
- 二年级上册连续加减括号混合竖式计算180题
- 空调投标书(范本)
- 第四单元课文复习(课件)部编版语文五年级上册
- 决议公开范文(推荐十九篇)
- 助产士的沟通技巧课件
- DB11-T 1913-2021 专业应急救援队伍能力建设规范 燃气
- 国际理解教育教案
- 健美操训练计划
- 深基坑安全管理(安全培训)课件
评论
0/150
提交评论