版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页四川省宜宾市第八中学2024年九上数学开学监测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%2、(4分)矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四边形EBFD是菱形;⑤MB:OE=3:2其中正确结论的个数是()A.5 B.4 C.3 D.23、(4分)已知点,,都在直线上,则,,的大小关系是()A. B. C. D.4、(4分)下列图形中,第(1)个图形由4条线段组成,第(2)个图形由10条线段组成,第(3)个图形由18条线段组成,…………第(6)个图形由()条线段组成.A.24 B.34 C.44 D.545、(4分)要使分式有意义,则x的取值应满足()A.x≠2 B.x=2 C.x=1 D.x≠16、(4分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a-2<b-2 C.> D.-2a>-2b7、(4分)若,则的值为()A. B. C. D.8、(4分)下列计算正确的是()A.=2 B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知平行四边形,,是边的中点,是边上一动点,将线段绕点逆时针旋转至,连接,,,,则的最小值是____.10、(4分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.11、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③.则三个结论中一定成立的是____________.12、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
13、(4分)对于实数a,b,定义运算“﹡”:.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=1.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=.三、解答题(本大题共5个小题,共48分)14、(12分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有()A.1个 B.2个 C.3个 D.4个15、(8分)在△ABC中,AB=30,BC=28,AC=1.求△ABC的面积.某学习小组经过合作交流给出了下面的解题思路,请你按照他们的解题思路完成解答过程.16、(8分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.(3)结合图像写出不等式的解集;17、(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?18、(10分)某中学开展“一起阅读,共同成长”课外读书周活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为______人,在扇形统计图中,课外阅读时间为5小时的扇形圆心角度数是______;(2)请你补全条形统计图;(3)若全校八年级共有学生人,估计八年级一周课外阅读时间至少为小时的学生有多少人?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)八年级(1)班四个绿化小组植树的棵数如下:8,8,10,x.已知这组数据的众数和平均数相等,那么这组数据的方差是_____.20、(4分)如图,以的两条直角边分别向外作等腰直角三角形.若斜边,则图中阴影部分的面积为_____.21、(4分)如图,在▱ABCD中,∠A=72°,将□ABCD绕顶点B顺时针旋转到▱A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=_____°.22、(4分)若关于x的分式方程的解为正数,则m的取值范围是_____.23、(4分)若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.二、解答题(本大题共3个小题,共30分)24、(8分)为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.25、(10分)在▱ABCD中,点E为AB边的中点,连接CE,将△BCE沿着CE翻折,点B落在点G处,连接AG并延长,交CD于F.(1)求证:四边形AECF是平行四边形;(2)若CF=5,△GCE的周长为20,求四边形ABCF的周长.26、(12分)如图,是边长为的等边三角形.(1)求边上的高与之间的函数关系式。是的一次函数吗?如果是一次函数,请指出相应的与的值.(2)当时,求的值.(3)求的面积与之间的函数关系式.是的一次函数吗?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2、B【解析】
作辅助线找全等三角形和特殊的直角三角形解题,见详解.【详解】解:连接BD
∵四边形ABCD是矩形∴AC=BD,AC、BD互相平分∵O为AC中点∴BD也过O点∴OB=OC∵∠COB=60°,OB=OC∴△OBC是等边三角形∴OB=BC=OC,∠OBC=60°∵FO=FC,BF=BF∴△OBF≌△CBF(SSS)∴△OBF与△CBF关于直线BF对称∴FB⊥OC,OM=CM.故③正确∵∠OBC=60°∴∠ABO=30°∵△OBF≌△CBF∴∠OBM=∠CBM=30°∴∠ABO=∠OBF∵AB∥CD∴∠OCF=∠OAE∵OA=OC可得△AOE≌△COF,故①正确∴OE=OF则四边形EBFD是平行四边形,又可知OB⊥EF∴四边形EBFD是菱形.故④正确∴△EOB≌△FOB≌△FCB.则②△EOB≌△CMB错误∵∠OMB=∠BOF=90°,∠OBF=30°,设MB=a,则OM=a,OB=2a,OF=OM,∵OE=OF∴MB:OE=3:2.则⑤正确综上一共有4个正确的,故选B.本题考查了四边形的综合应用,特殊的直角三角形,三角形的全等,菱形的判定,综合性强,难度大,认真审题,证明全等找到边长之间的关系是解题关键.3、C【解析】
中,,所以y随x的增大而减小,依据三点的x值的大小即可确定y值的大小关系.【详解】解:y随x的增大而减小又故答案为:C本题考查了一次函数的性质,正确理解并应用其性质是解题的关键.4、D【解析】
由题意可知:第一个图形有4条线段组成,第二个图形有4+6=10条线段组成,第三个图形有4+6+8=18条线段组成,第四个图形有4+6+8+10=28条线段组成…由此得出,第6个图形4+6+8+10+12+14=54条线段组成,由此得出答案即可.【详解】解:∵第一个图形有4条线段组成,第二个图形有4+6=10条线段组成,第三个图形有4+6+8=18条线段组成,第四个图形有4+6+8+10=28条线段组成,…由此得出,∴第6个图形4+6+8+10+12+14=54条线段组成,故选:D.此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题是解答此题的关键.5、A【解析】
根据分式的性质,要使分式有意义,则分式的分母不等于0.【详解】根据题意可得要使分式有意义,则所以可得故选A.本题主要考查分式的性质,关键在于分式的分母不能为0.6、C【解析】已知a>b,A.
a+2>b+2,故A选项错误;B.
a−2>b−2,故B选项错误;C.
>,故C选项正确;D.
−2a<−2b,故D选项错误.故选C.7、C【解析】
首先设,将代数式化为含有同类项的代数式,即可得解.【详解】设∴∴故答案为C.此题主要考查分式计算,关键是设参数求值.8、C【解析】
根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】A.=4,故A选项错误;B.与不是同类二次根式,不能合并,故B选项错误;C.,故C选项正确;D.=,故D选项错误,故选C.本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
如图,作交于,连接、、作于,首先证明,因为,即可推出当、、共线时,的值最小,最小值.【详解】如图,作交于,连接、、作于.是等腰直角三角形,,,,,,,,,,,,,,当、、共线时,的值最小,最小值,在中,,,在中,.故答案为:.本题考查了四边形的动点问题,掌握当、、共线时,的值最小,最小值是解题的关键.10、2.1【解析】试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.解:过点D作DE⊥AB于E,∵AD平分∠BAC,DE⊥AB,DC⊥AC∴CD=DE又BD:DC=2:1,BC=7.8cm∴DC=7.8÷(2+1)=7.8÷3=2.1cm.∴DE=DC=2.1cm.故填2.1.点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.11、①③【解析】
由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=FM,根据直角三角形的性质得到BE=FM,等量代换的EF=BE,故②错误;由于,,于是得到,故③正确.【详解】解:∵BF⊥AD,∴∠AFB=90°,∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,∴∠AFB=∠FBC=90°,故①正确;如下图所示,延长FE交BC的延长线于M,又∵在平行四边形ABCD中,AD∥BC,平行线之间内错角相等,∴∠DFE=∠M,且CD与MF交于点E,两相交直线对顶角相等,∴∠DEF=∠CEM,又∵BE平分∠ABC,∴∠ABE=∠EBC,而平行四边形ABCD中,AB∥CD,平行线之间内错角相等,∴∠CEB=∠ABE,∴∠ABE=∠EBC=∠CEB,故BCE为等腰三角形,其中BC=CE,又∵AB=2AD,故CD=2BC=2CE,∴CE=DE,在DFE与CME中,,∴DFE≌CME(AAS),∴EF=EM=FM,又∵∠FBM=90°,∴BE=FM,∴EF=BE,∵EF≠DE,故②错误;又∵EF=EM,∴,∵△DFE≌△CME,∴,∴,故③正确,故答案为:①③.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,本题需要添加辅助线,构造出全等三角形DFE≌CME,这是解题的关键.12、③【解析】分析:根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.详解:∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;故答案是:②.点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:①定义;②四边相等;③对角线互相垂直平分.13、3或﹣3【解析】试题分析:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2.①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.三、解答题(本大题共5个小题,共48分)14、C【解析】
连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,AG≠DG,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,,∴△BCE≌△CDF,(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF;故①正确;在Rt△CGD中,H是CD边的中点,∴HG=CD=AD,即2HG=AD;故④正确;连接AH,如图所示:同理可得:AH⊥DF,∵HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD;若AG=DG,则△ADG是等边三角形,则∠ADG=60°,∠CDF=30°,而CF=CD≠DF,∴∠CDF≠30°,∴∠ADG≠60°,∴AG≠DG,故②错误;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG;故③正确;正确的结论有3个,故选C.此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.15、△ABC的面积为2【解析】
根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.【详解】解:过点D作AD⊥BC,垂足为点D.设BD=x,则CD=28﹣x.在Rt△ABD中,AB=30,BD=x,由勾股定理可得AD2=AB2﹣BD2=302﹣x2,在Rt△ACD中,AC=1,CD=28﹣x,由勾股定理可得AD2=AC2﹣CD2=12﹣(28﹣x)2,∴302﹣x2=12﹣(28﹣x)2,解得:x=18,∴AD2=AB2﹣BD2=302﹣x2=302﹣182=576,∴AD=24,S△ABC=BC•AD=×28×24=2则△ABC的面积为2.此题考查勾股定理,解题关键是根据题意正确表示出AD2的值.16、(1)y=,y=-x+1;(3)点E的坐标为(0,5)或(0,4);(3)0<x<3或x>13【解析】
(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;
(3)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,1),得出PE=|m﹣1|,根据S△AEB=S△BEP﹣S△AEP=3,求出m的值,从而得出点E的坐标.(3)根据函数图象比较函数值的大小.【详解】解:(1)把点A(3,6)代入y=,得m=13,则y=.得,解得把点B(n,1)代入y=,得n=13,则点B的坐标为(13,1).由直线y=kx+b过点A(3,6),点B(13,1),则所求一次函数的表达式为y=﹣x+1.(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,1).∴PE=|m﹣1|.∵S△AEB=S△BEP﹣S△AEP=3,∴×|m﹣1|×(13﹣3)=3.∴|m﹣1|=3.∴m1=5,m3=4.∴点E的坐标为(0,5)或(0,4).(3)根据函数图象可得的解集:或;考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.17、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得x+2y=解得x=答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得100a+15010-a解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.18、(1)50,;(2)见解析;(3)432人.【解析】
(1)由阅读3小时的人数10人与所占的百分比,可求出调查的总人数,乘以样本中阅读5小时的小时所占的百分比即可,(2)分别计算出阅读4小时的男生人和阅读6小时的男生人数,即可补全条形统计图,(3)用样本估计总体,总人数900去乘样本中阅读5小时以上的占比即可.【详解】解:(1)人,故答案为:50,.(2)4小时的人数中的男生:人,6小时的人数中男生:人,条形统计图补全如图所示:(3)人答:八年级一周课外阅读时间至少为5小时的学生大约有432人.考查条形统计图、扇形统计图的制作方法及所反映的数据的特点,两个统计图结合起来,可以求出相应的问题,正确的理解统计图中各个数量之间的关系是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】
根据题意先确定x的值,再根据方差公式进行计算即可.【详解】解:当x=10时,有两个众数,而平均数只有一个,不合题意舍去.当众数为8时,根据题意得,解得x=6,则这组数据的方差是:.故答案为1.本题考查了数据的收集和处理,主要考查了众数、平均数和方差的知识,解题时需要理解题意,分类讨论.20、【解析】
根据勾股定理和等腰直角三角形的面积公式,即可得到结论.【详解】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=(AC2+BC2)=×25=,
故答案为.本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.21、1【解析】
由旋转的性质可知:▱ABCD全等于▱A1BC1D1,得出BC=BC1,由等腰三角形的性质得出∠BCC1=∠C1,由旋转角∠ABA1=∠CBC1,根据等腰三角形的性质计算即可.【详解】∵▱ABCD绕顶点B顺时针旋转到▱A1BC1D1,∴BC=BC1,∴∠BCC1=∠C1,∵∠A=72°,∴∠DCB=∠C1=72°,∴∠BCC1=∠C1,∴∠CBC1=180°﹣2×72°=1°,∴∠ABA1=1°,故答案为1.本题考查了平行四边形的性质、旋转的性质、等腰三角形的判定和性质以及三角形的内角和定理,解题的关键是证明三角形CBC1是等腰三角形.22、m>1【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.【详解】解:去分母得,m-1=2x+2,
解得,x=,
∵方程的解是正数,
∴m-1>2,
解这个不等式得,m>1,
∵+1≠2,
∴m≠1,
则m的取值范围是m>1.
故答案为:m>1.本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于2.23、1【解析】
根据等腰三角形的性质先求出BD,然后在Rt△ABD中,可根据勾股定理进行求解.【详解】解:如图:
由题意得:AB=AC=10cm,BC=11cm,
作AD⊥BC于点D,则有DB=BC=8cm,
在Rt△ABD中,AD==1cm.
故答案为1.本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理求直角三角形的边长.二、解答题(本大题共3个小题,共30分)24、(1)100人闯红灯(2)见解析;(3)众数为15人,中位数为20人【解析】
(1)根据11﹣12点闯红灯的人数除以所占的百分比即可求出7﹣12这一时间段共有的人数.(2)根据7﹣8点所占的百分比乘以总人数即可求出7﹣8点闯红灯的人数,同理求出8﹣9点的人数,然后可计算出10﹣11点的人数,补全条形统计图即可;求出9﹣10及10﹣11点的百分比,分别乘以360度即可求出圆心角的度数.(3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.【详解】解:(1)根据题意得:40÷40%=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海滩主题课程设计
- 2024年度担保业务创新产品开发服务协议2篇
- 开展安全生产隐患排查工作总结范文(11篇)
- 家长随笔心得体会
- 感恩节教育学生精彩讲话稿(5篇)
- 感恩节旗下演讲稿合集5篇
- 幼儿参观消防队的主持词(5篇)
- 疫情主题绘画课程设计
- 牙膏盒包装结构课程设计
- 感恩父亲演讲稿模板锦集10篇
- 辽宁省抚顺市清原县2024届九年级上学期期末质量检测数学试卷(含解析)
- 2024-2025学年上学期福建高二物理期末卷2
- 2024四川阿坝州事业单位和州直机关招聘691人历年管理单位遴选500模拟题附带答案详解
- 麻醉科工作计划
- 《英美文化概况》课件
- 四川省2023年普通高中学业水平考试物理试卷 含解析
- 【MOOC】中级财务会计-北京交通大学 中国大学慕课MOOC答案
- 《园林政策与法规》课件
- 扬尘防治(治理)监理实施细则(范本)
- 五金耗材材料项目投标方案(技术方案)
- 读书分享《终身成长》课件
评论
0/150
提交评论