2025届山西省吕梁市数学高一上期末检测模拟试题含解析_第1页
2025届山西省吕梁市数学高一上期末检测模拟试题含解析_第2页
2025届山西省吕梁市数学高一上期末检测模拟试题含解析_第3页
2025届山西省吕梁市数学高一上期末检测模拟试题含解析_第4页
2025届山西省吕梁市数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省吕梁市数学高一上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.函数图象一定过点A.(0,1) B.(1,0)C.(0,3) D.(3,0)3.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或4.如图,在正方体中,与平面所成角的余弦值是A. B.C. D.5.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②6.函数的零点个数为()A.个 B.个C.个 D.个7.“”是“为第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数(其中)的最小正周期为,则()A. B.C.1 D.9.若函数的零点所在的区间为,则实数a的取值范围是()A. B.C. D.10.已知向量,,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若扇形AOB的圆心角为,周长为10+3π,则该扇形的面积为_____12.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-113.直线的倾斜角为,直线的倾斜角为,则__________14.某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为,则徒弟加工2个零件都是精品的概率为______15.已知,则____________________.16.已知,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记的值域分别为集合,设,若是成立的必要条件,求实数的取值范围.18.设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(∁UA)∪(∁UB);(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围19.已知函数(1)求的值;(2)若对任意的,都有求实数的取值范围.20.在①函数的图象向右平移个单位长度得到的图象,图象关于原点对称;②向量,;③函数.这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数的图象相邻两条对称轴之间的距离为.(1)求;(2)求函数在上的单调递减区间.21.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件2、C【解析】根据过定点,可得函数过定点.【详解】因为在函数中,当时,恒有,函数的图象一定经过点,故选C.【点睛】本题主要考查指数函数的几何性质,属于简单题.函数图象过定点问题主要有两种类型:(1)指数型,主要借助过定点解答;(2)对数型:主要借助过定点解答.3、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.4、D【解析】连接,设正方体棱长为1.∵平面,∴∠为与平面所成角.∴故选D5、D【解析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D6、C【解析】根据给定条件直接解方程即可判断作答.详解】由得:,即,解得,即,所以函数的零点个数为2.故选:C7、B【解析】利用辅助角公式及正弦函数的性质解三角形不等式,再根据集合的包含关系判断充分条件、必要条件即可;【详解】解:由,即,所以,,解得,,即,又第二象限角为,因为真包含于,所以“”是“为第二象限角”的必要不充分条件;故选:B8、D【解析】根据正弦型函数的最小正周期求ω,从而可求的值.【详解】由题可知,,∴.故选:D.9、C【解析】由函数的性质可得在上是增函数,再由函数零点存在定理列不等式组,即可求解得a的取值范围.【详解】易知函数在上单调递增,且函数零点所在的区间为,所以,解得故选:C10、D【解析】A项:利用向量的坐标运算以及向量共线的等价条件即可判断.B项:利用向量模的公式即可判断.C项:利用向量的坐标运算求出数量积即可比较大小.D项:利用向量加法的坐标运算即可判断.【详解】A选项:因为,,所以与不共线.B选项:,,显然,不正确.C选项:因为,所以,不正确;D选项:因为,所以,正确;答案为D.【点睛】主要考查向量加、减、数乘、数量积的坐标运算,还有向量模的公式以及向量共线的等价条件的运用.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设扇形AOB的的弧长为l,半径为r,由已知可得l=3π,r=5,再结合扇形的面积公式求解即可.【详解】解:设扇形AOB的的弧长为l,半径为r,∴,l+2r=10+3π,∴l=3π,r=5,∴该扇形的面积S,故答案为:.【点睛】本题考查了扇形的弧长公式及扇形的面积公式,重点考查了方程的思想,属基础题.12、D【解析】设平均增长率为x,由题得故填.13、【解析】,所以,,故.填14、##0.25【解析】结合相互独立事件的乘法公式直接计算即可.【详解】记师傅加工两个零件都是精品的概率为,则,徒弟加工两个零件都是精品的概率为,则师徒二人各加工两个零件都是精品的概率为,求得,故徒弟加工两个零件都是精品的概率为.故答案为:15、7【解析】将两边平方,化简即可得结果.【详解】因为,所以,两边平方可得,所以,故答案为7.【点睛】本题主要考查指数的运算,意在考查对基础知识的掌握情况,属于简单题.16、##0.8【解析】利用同角三角函数的基本关系,将弦化切再代入求值【详解】解:,则,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据幂函数的定义求解;(2)由条件可知,再根据集合之间的关系建立不等式求解即可.【小问1详解】由幂函数的定义得:,解得或,当时,在上单调递减,与题设矛盾,舍去;当时,上单调递增,符合题意;综上可知:.【小问2详解】由(1)得:,当时,,即.当时,,即,由是成立的必要条件,则,显然,则,即,所以实数的取值范围为.18、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(∁UA)∪(∁UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C⊆B,当C=∅时,2m﹣1<m+1,当C≠∅时,由C⊆B得,由此能求出m的取值范围【详解】解:(Ⅰ)∵全集U=R,集合A={x|2x-1≥1}={x|x≥1},B={x|x2-4x-5<0}={x|-1<x<5}∴A∩B={x|1≤x<5},(CUA)∪(CUB)={x|x<1或x≥5}(Ⅱ)∵集合C={x|m+1<x<2m-1},B∩C=C,∴C⊆B,当C=∅时,解得当C≠∅时,由C⊆B得,解得:2<m≤3综上所述:m的取值范围是(-∞,3]【点睛】本题考查交集、补集、并集的求法,考查实数的取值范围的求法,考查交集、补集、并集集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题19、(1)(2)【解析】(1)代入后,利用余弦的二倍角公式进行求解;(2)先化简得到,进而求出的最大值,求出实数的取值范围.【小问1详解】【小问2详解】因为x∈,所以2x+∈,所以当2x+=,即x=时,取得最大值.所以对任意x∈,等价于≤c.故实数c的取值范围是.20、选择见解析;(1);(2)单调递减区间为.【解析】选条件①:由函数的图象相邻两条对称轴之间的距离为,得到,解得,再由平移变换和图象关于原点对称,解得,得到,(1)将代入求解;(2)令,结合求解.选条件②:利用平面向量的数量积运算得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.选条件③:利用两角和的正弦公式,二倍角公式和辅助角法化简得到,再由,求得得到.(1)将代入求解;(2)令,结合求解.【详解】选条件①:由题意可知,最小正周期,∴,∴,∴,又函数图象关于原点对称,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函数在上的单调递减区间为.选条件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函数在上的单调递减区间为.【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y=Asin(ωx+φ)(ω>0)的形式

函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.

对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t=ωx+φ,将其转化为研究y=sint的性质21、(1);(2)【解析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论