![江西省抚州市临川区一中2025届数学高一上期末质量跟踪监视试题含解析_第1页](http://file4.renrendoc.com/view8/M03/3B/13/wKhkGWciitOAMNZuAAH0eF7d3Qo361.jpg)
![江西省抚州市临川区一中2025届数学高一上期末质量跟踪监视试题含解析_第2页](http://file4.renrendoc.com/view8/M03/3B/13/wKhkGWciitOAMNZuAAH0eF7d3Qo3612.jpg)
![江西省抚州市临川区一中2025届数学高一上期末质量跟踪监视试题含解析_第3页](http://file4.renrendoc.com/view8/M03/3B/13/wKhkGWciitOAMNZuAAH0eF7d3Qo3613.jpg)
![江西省抚州市临川区一中2025届数学高一上期末质量跟踪监视试题含解析_第4页](http://file4.renrendoc.com/view8/M03/3B/13/wKhkGWciitOAMNZuAAH0eF7d3Qo3614.jpg)
![江西省抚州市临川区一中2025届数学高一上期末质量跟踪监视试题含解析_第5页](http://file4.renrendoc.com/view8/M03/3B/13/wKhkGWciitOAMNZuAAH0eF7d3Qo3615.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省抚州市临川区一中2025届数学高一上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}2.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.3.设是两个单位向量,且,那么它们的夹角等于()A. B.C. D.4.已知命题,,则命题否定为()A., B.,C., D.,5.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,6.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知向量,,若与共线,则等于()A. B.C. D.8.已知函数与的部分图象如图1(粗线为部分图象,细线为部分图象)所示,则图2可能是下列哪个函数的部分图象()A. B.C. D.9.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.10.某三棱锥的三视图如图所示,则该三棱锥的体积是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若函数满足对,都有,则实数的取值范围是_______.12.若不等式对一切恒成立,则a的取值范围是______________.13.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______14.已知是锐角,且sin=,sin=_________.15.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______16.在半径为5的圆中,的圆心角所对的扇形的面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足(1)求的最小值;(2)若在上有两个不同的零点,求的取值范围18.如图,建造一个容积为,深为,宽为的长方体无盖水池,如果池底的造价为元/,池壁的造价为元/,求水池的总造价.19.已知.(1)化简;(2)若是第四象限角,且,求的值.20.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.21.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),选A考点:本题主要考查集合概念,集合的表示方法和并集运算.2、A【解析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【详解】由题意可得“”是真命题,故或.故选:A.3、C【解析】由条件两边平方可得,代入夹角公式即可得到结果.【详解】由,可得:,又是两个单位向量,∴∴∴它们的夹角等于故选C【点睛】本题考查单位向量的概念,向量数量积的运算及其计算公式,向量夹角余弦的计算公式,以及已知三角函数求角,清楚向量夹角的范围4、D【解析】根据全称命题的否定是特称命题形式,直接选出答案.【详解】命题,,是全称命题,故其否定命题为:,,故选:D.5、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.6、A【解析】解两个不等式,利用集合的包含关系判断可得出结论.【详解】解不等式可得,解不等式可得或,因为或,因此,“”是“”的充分不必要条件.故选:A.7、A【解析】先求出,,再根据向量共线求解即可.【详解】由题得,因为与共线,.故选:A.【点睛】本题主要考查平面向量的坐标运算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解析】结合函数的奇偶性、特殊点的函数值确定正确选项.【详解】由图1可知为偶函数,为奇函数,A选项,,所以是偶函数,不符合图2.A错.C选项,,所以是偶函数,不符合图2.C错.D选项,,所以的定义域不包括,不符合图2.D错.B选项,,所以是奇函数,符合图2,所以B符合.故选:B9、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C10、B【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则,选B.【考点定位】三视图与几何体的体积二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.12、【解析】先讨论时不恒成立,再根据二次函数的图象开口方向、判别式进行求解.【详解】当时,则化为(不恒成立,舍),当时,要使对一切恒成立,需,即,即a的取值范围是.故答案为:.13、16【解析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.14、【解析】由诱导公式可求解.【详解】由,而.故答案为:15、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.16、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据函数的对称性可得出,再由均值不等式求解即可;(2)根据零点的分布列出不等式组求解即可.【小问1详解】因为满足,所以化简得因为对任意恒成立,所以,即,当且仅当时,等号成立所以当时,取得最小值为【小问2详解】由(1)知.对称轴方程为,因为在上有两个不同的零点,所以解得所以ab的取值范围是18、2880元【解析】先求出水池的长,再求出底面积与侧面积,利用池底的造价为120元/m2,池壁的造价为80元/m2,即可求水池的总造价【详解】分别设长、宽、高为am,bm,hm;水池的总造价为y元,则V=abh=16,h=2,b=2,∴a=4m,∴S底=4×2=8m2,S侧=2×(2+4)×2=24m2,∴y=120×8+80×24=2880元【点睛】本题考查利用数学知识解决实际问题,考查学生的转化能力,属于基础题19、(1);(2).【解析】(1)根据诱导公式进行求解即可;(2)根据同角三角函数关系式进行求解即可.【小问1详解】【小问2详解】因为是第四象限角,且,.因此,.20、(1)(2)【解析】(1)根据函数过点代入解析式,即可求得的值;(2)由(1)可得函数的解析式,结合函数的单调性求出x的取值范围.【详解】解:(1)∵函数的图象经过点,即,可得;(2)由(1)得,即,,【点睛】本题考查待定系数法求函数解析式,以及由指数函数的单调性解不等式,属于基础题.21、(1)||=5;;(2);(3).【解析】(1)利用向量的模长的坐标公式即得;(2)利用向量的线性坐标表示即得;(3)利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度商业地产室内外绿化设计与施工合同范本
- 2025年度土地资源规划与咨询服务合同
- 2025年度住宅小区门窗一体化采购安装合同范本
- 2025年度全新电商产品居间合作协议模板下载
- 买地合作合同范本
- 解除处分的个人申请书
- 兴趣班培训合同范本
- 临时顾问合同范本
- 加盟协议合同范本
- wps合同范例范例
- 漫画物理之力学
- 新浪舆情通建设方案
- 单板硬件测试规范
- 关于市推动高新技术企业发展的调研报告
- 壮医滚蛋治疗护理技术操作规范
- 学校安防监控维保方案
- 13J103-7《人造板材幕墙》
- 七步洗手法 课件
- 供应商信息安全检查表
- 仓库安全卫生管理制度
- 2023-2024学年四川省凉山州小学语文二年级期末评估考试题详细参考答案解析
评论
0/150
提交评论