版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省本溪高级中学2025届高一上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的大小关系是()A. B.C. D.2.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.3.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.10104.如图,摩天轮上一点在时刻距离地面的高度满足,,,,已知某摩天轮的半径为50米,点距地面的高度为60米,摩天轮做匀速运动,每10分钟转一圈,点的起始位置在摩天轮的最低点,则(米)关于(分钟)的解析式为()A.() B.()C.() D.()5.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.6.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.27.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知幂函数的图像过点,则下列关于说法正确的是()A.奇函数 B.偶函数C.定义域为 D.在单调递减9.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.410.若集合,则集合()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马,底面,,,,则此阳马的外接球的表面积为______.12.已知,则______________13.若函数是定义在上的严格增函数,且对一切x,满足,则不等式的解集为___________.14.函数fx=15.若函数的定义域为R,则实数m的取值范围是______16.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P-ABCD中,AB∥CD,△PAD是等边三角形,平面PAD⊥平面ABCD,已知AD=2,,AB=2CD=4(1)求证:平面PBD⊥平面PAD;(2)若M为PC的中点,求四棱锥M-ABCD的体积18.(1)已知方程,的值(2)已知是关于的方程的两个实根,且,求的值19.已知,且函数.(1)判断的奇偶性,并证明你的结论;(2)设,对任意,总存在,使得g(x1)=h(x2)成立,求实数c的取值范围.在以下①,②两个条件中,选择一个条件,将上面的题目补充完整,先求出a,b的值,并解答本题.①函数在定义域上为偶函数;②函数在上的值域为;20.已知函数f(x)=2x(1)求a及f(-2)的值;(2)判断f(x)的奇偶性并证明;(3)若当x∈(0,+∞)时,x221.已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点(1)求函数的解析式;(2)若关于x的方程,有解,求实数a的取值范围;(3)若对任意的,不等式恒成立,求实数k的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用指数函数和对数函数的性质,三角函数的性质比较大小即可【详解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴综上可知故选:B2、D【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D3、D【解析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D4、B【解析】根据给定信息,依次计算,再代入即可作答.【详解】因函数最大值为110,最小值为10,因此有,解得,而函数的周期为10,即,则,又当时,,则,而,解得,所以.故选:B5、C【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.6、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值7、A【解析】先判断“”成立时,“”是否成立,反之,再看“”成立,能否推出“”,即可得答案.【详解】“”成立时,,故“”成立,即“”是“”的充分条件;“”成立时,或,此时推不出“”成立,故“”不是“”的必要条件,故选:A.8、D【解析】设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项.【详解】设幂函数为,因为函数过点,所以,则,所以,该函数定义域为,则其既不是奇函数也不是偶函数,且由可知,该幂函数在单调递减.故选:D.9、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D10、D【解析】解方程,再求并集.【详解】故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将该几何体放入长方体中,即可求得外接球的半径,再由球的表面积公式即可得解.【详解】将该几何体放入长方体中,如图,易知该长方体的长、宽、高分别为、、,所以该几何体的外接球半径,所以该球的表面积.故答案为:.12、100【解析】分析得出得解.【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键.13、【解析】根据题意,将问题转化为,,再根据单调性解不等式即可得答案.【详解】解:因为函数对一切x,满足,所以,,令,则,即,所以等价于,因为函数是定义在上的严格增函数,所以,解得所以不等式的解集为故答案为:14、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域15、【解析】由题意得到时,恒成立,然后根据当和时,进行分类讨论即可求出结果.详解】依题意,当时,恒成立当时,,符合题意;当时,则,即解得,综上,实数m的取值范围是,故答案:16、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明过程详见解析(2)【解析】(1)先证明BD⊥平面PAD,即证平面PBD⊥平面PAD.(2)取AD中点为O,则PO是四棱锥的高,再利用公式法求四棱锥M-ABCD的体积【详解】(1)在三角形ABD中由勾股定理得AD⊥BD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BD⊥平面PAD,则平面PBD⊥平面PAD.(2)取AD中点为O,则PO是四棱锥的高,,底面ABCD的面积是三角形ABD面积的,即,所以四棱锥P-ABCD的体积为.【点睛】本题主要考查空间直线平面位置关系的证明,考查空间几何体体积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理转化能力.18、(1);(2)【解析】(1)由已知利用诱导公式化简得到的值,再利用诱导公式化简为含有的形式,代入即可;(2)由根与系数的关系求出的值,结合的范围求出,进一步求出,即可求的值【详解】解:(1)由得:,即,,;(2),是关于的方程的两个实根,,解得:,又,,,即,解得:,,.【点睛】关键点点睛:解答本题的关键是化弦为切.19、(1)奇函数,证明见解析;(2).【解析】若选择①利用偶函数的性质求,若选择条件②,利用函数的单调性,求函数的值域,比较后得到值;(1)由①或②得,利用奇偶函数的定义判断;(2)根据条件转化为的值域是的值域的子集,求实数的取值范围.【详解】若选择①由,在上是偶函数,则,且,所以a=2,b=0;②当a>1时,在上单调递增,则有,解得a=2,b=0;由①或②得,(1)为奇函数证明:的定义域为R.因为,则为奇函数(2)当x>0时,,因为,当且仅当即x=1时等号成立,所以;当x<0时,因为为奇函数,所以;当x=0时,;所以的值域为[,],,,函数是单调递减函数,所以函数的值域是对任意的,总存在,使得g(x1)=h(x2)成立,,,得.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集20、(1)a=-1,f(-2)=-(2)f(x)是奇函数,证明见解析(3)(-【解析】(1)根据f(1)=32求出a=-1,进而求出f(x)=2x-2-xx2和f-2;(2)定义法求解f(x)的奇偶性;(3【小问1详解】f(1)=2+a所以f(x)=2故f(-2)=【小问2详解】f(x)是奇函数证明如下:f(x)的定义域为{x∣x≠0},f(-x)=2所以f(x)是奇函数【小问3详解】x2f(x)+m+2整理得:2x两边同乘以2x,得2当x∈(0,+∞)时,2因为2x当且仅当2x-1=1,即所以m的取值范围是(-21、(1)(2)(3)【解析】(1)设出的解析式,根据点求得的解析式.根据为奇函数,求得解析式.(2)根据的单调性和值域,求得的取值范围.(3)证得的单调性,结合的奇偶性化简不等式,得到对任意的,,利用二次函数的性质求得的取值范围.【详解】(1)设(,且),则,所以(舍去)或,所以,又为奇函数,且定义域为R,所以,即,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全型井盖产品专用购销协议细则版
- 2024全新建筑工程施工协议法律文件版
- 滑雪斜坡用编织绳垫项目评价分析报告
- 教育行业税务审计要点
- 快递公司车辆维修保养手册
- 建筑业安全施工规范手册
- 电子香烟电池充电器相关项目实施方案
- 煤气灶市场环境与对策分析
- 医院感染控制培训手册
- 区块链技术在数字广告中的应用手册
- 装备外观代码
- 横河DCS系统参数及报警说明
- 长春中医药大学附属医院进修人员管理协议书
- 象数疗法常见配方
- 某检查站工程施工设计方案
- 小学体育教师工作考核实施方案
- 科隆威波峰焊说明书
- 档案目录格式规范
- 数控车床常用数控刀具ppt课件
- 电工基础习题册电子版(共53页)
- 人民银行某市中心支行办公大楼玻璃幕墙安全性鉴定报告
评论
0/150
提交评论