版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省宕昌县第一中高二上数学期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列是各项均为正数的等比数列,若,则公比()A. B.2C.2或 D.42.若函数f(x)=x2+x+1在区间内有极值点,则实数a的取值范围是()A. B.C. D.3.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.4.下列直线中,倾斜角为锐角的是()A. B.C. D.5.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.816.等比数列的各项均为正数,且,则A. B.C. D.7.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数直线与的图象相交于A、B两点,则的最小值为()A.3 B.C. D.9.已知,则的大小关系为()A. B.C. D.10.如图,在平行六面体中,为与的交点,若,,,则的值为()A. B.C. D.11.命题“,都有”的否定为()A.,使得 B.,使得C.,使得 D.,使得12.“,”的否定是A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.圆被直线所截得弦的最短长度为___________.14.如图,一个小球从10m高处自由落下,每次着地后又弹回到原来高度的,若已知小球经过的路程为,则小球落地的次数为______15.函数满足,且,则的最小值为___________.16.函数的图象在点处的切线方程为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点、,并修建两段直线型道路、.规划要求,线段、上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).(1)若道路与桥垂直,求道路的长;(2)在规划要求下,点能否选在处?并说明理由.18.(12分)已知E,F分别是正方体的棱BC和CD的中点(1)求与所成角的大小;(2)求与平面所成角的余弦值19.(12分)已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.20.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?21.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数的取值范围22.(10分)已知函数,当时,有极大值3(1)求的值;(2)求函数的极小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由两式相除即可求公比.【详解】设等比数列的公比为q,∵其各项均为正数,故q>0,∵,∴,又∵,∴=4,则q=2.故选:B.2、C【解析】若f(x)=x2+x+1在区间内有极值点,则f'(x)=x2-ax+1在区间内有零点,且零点不是f'(x)的图象顶点的横坐标.由x2-ax+1=0,得a=x+.因为x∈,y=x+的值域是,当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是,故选C.3、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B4、A【解析】先由直线方程找到直线的斜率,再推导出直线的倾斜角即可.【详解】选项A:直线的斜率,则直线倾斜角为,是锐角,判断正确;选项B:直线的斜率,则直线倾斜角为钝角,判断错误;选项C:直线的斜率,则直线倾斜角为0,不是锐角,判断错误;选项D:直线没有斜率,倾斜角为直角,不是锐角,判断错误.故选:A5、B【解析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.6、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.7、B【解析】因但8、C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得解得,令,其中,∴.∴函数单调递减;.因此,的最小值为故选:C【点睛】距离的最值求解:(1)几何法求最值;(2)代数法:表示出距离,利用函数求最值.9、B【解析】构造利用导数判断函数在上单调递减,利用单调性比较大小【详解】设恒成立,函数在上单调递减,.故选:B10、D【解析】将用基底表示,然后利用空间向量数量积的运算性质可求得结果.【详解】因为四边形为平行四边形,且,则为的中点,,则.故选:D11、A【解析】根据命题的否定的定义判断【详解】全称命题的否定是特称命题,命题“,都有”的否定为:,使得故选:A12、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先确定直线所过定点;由圆的方程可确定圆心和半径,进而求得圆心到的距离,由此可知所求最短长度为.【详解】由得:,直线恒过点;,在圆内;又圆的圆心为,半径,圆心到点的距离,所截得弦的最短长度为.故答案为:.14、4【解析】设小球从第(n-1)次落地到第n次落地时经过的路程为m,则由已知可得数列是从第2项开始以首项为,公比为的等比数列,根据等比数列的通项公式求得,再设设小球第n次落地时,经过的路程为,由等比数列的求和公式建立方程求解即可.【详解】解:设小球从第(n-1)次落地到第n次落地时经过的路程为m,则当时,得出递推关系,所以数列是从第2项开始以首项为,公比为的等比数列,所以,且,设小球第n次落地时,经过的路程为,所以,所以,解得,故答案为:4.15、6【解析】化简得出,由化简后根据均值不等式建立不等式,求解二次不等式即可得解.【详解】,由得:,(当且仅当时取等号),所以的最小值为6.故答案为:616、【解析】先求出导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程.【详解】由题意,,,则切线方程为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)15(百米)(2)点选在处不满足规划要求,理由见解析【解析】(1)建立适当的坐标系,得圆及直线的方程,进而得解.(2)不妨点选在处,求方程并求其与圆的交点,在线段上取点不符合条件,得结论.【小问1详解】如图,过作,垂足为.以为坐标原点,直线为轴,建立平面直角坐标系.因为为圆的直径,,所以圆的方程为.因为,,所以,故直线的方程为,则点,的纵坐标分别为3,从而,,直线的斜率为.因为,所以直线的斜率为,直线的方程为.令,得,,所以.因此道路的长为15(百米).【小问2详解】若点选在处,连结,可求出点,又,所以线段.由解得或,故不妨取,得到在线段上的点,因为,所以线段上存在点到点的距离小于圆的半径5.因此点选在处不满足规划要求.18、(1)60°;(2).【解析】(1)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出异面直线所成角的余弦值,进而结合异面直线成角的范围即可求出结果;(2)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出求出线面角的正弦值,进而结合线面角的范围即可求出结果;【小问1详解】以AB,AD,所在直线分别为x,y,z轴建立如图所示的空间直角坐标系,设正方体的棱长为,则,,,,所以,,设与EF所成角的大小为,则,因为异面直线成角的范围是,所以与所成角的大小为60°【小问2详解】设平面的法向量为,与平面所成角为,因为,,所以,,所以,令,得为平面的一个法向量,又因为,所以,所以19、x-y-4=0或x-y+1="0."【解析】假设存在,并设出直线方程y=x+b,然后代入圆的方程得到关于x的一元二次方程,利用韦达定理得到根的关系,最后利用OA⊥OB即x1x2+y1y2=0,得到参数b的方程求解即可试题解析:设直线l的方程为y=x+b①圆C:x2+y2-2x+4y-4=0.②联立①②消去y,得2x2+2(b+1)x+b2+4b-4=0设A(x1,y1),B(x2,y2),则有③因为以AB为直径的圆经过原点,所以OA⊥OB,即x1x2+y1y2=0,而y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2,所以2x1x2+b(x1+x2)+b2=0,把③代入:b2+4b-4-b(b+1)+b2=0,即b2+3b-4=0,解得b=1或b=-4,故直线l存在,方程是x-y+1=0,或x-y-4=0考点:存在性问题【方法点睛】存在性问题,首先应假设存在,然后去求解.对本题来说具体是:设出直线方程y=x+b,然后分析几何性质得到OA⊥OB即得到关于参数b方程求解即可.解该类问题最容易出错的的地方是,忽视对参数范围的考虑,即直线方程与圆的方程联立求解后应得到,即求出的b值必须满足b的范围,否则无解20、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是268800元.考点:不等式求解最值点评:主要是考查了不等式求解最值的运用,属于基础题.21、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:的圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托艺术培训合同模板
- 塔吊出租公司合同模板
- 香港公司开发合同模板
- 中海地产售楼合同模板
- 松江5吨叉车租赁合同模板
- 饮料品牌代理合同模板
- 茶叶礼盒购销合同模板
- 苏州建筑工程施工合同模板
- 饭店合伙经营合同模板
- 装饰水电劳务合同模板
- 单品合同协议书
- 医学考博英语词汇
- 2024-2030年中国光谱分析仪行业市场发展趋势与前景展望战略分析报告
- 直播电商基础知识考核试题及答案
- 计算机各种进制转换练习题(附答案)
- 防静电安全技术
- 智能机器人设计与实践智慧树知到期末考试答案章节答案2024年北京航空航天大学
- 罐头食品行业质量控制及安全管理
- 浙江省杭州市杭州外国语学校2023-2024学年七年级上学期期末英语试题
- 专利申请文件审查意见的答复
- 幼儿园教师外出学习培训考察审批表(文档良心出品)
评论
0/150
提交评论