版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市海淀区中关村中学分校数学高三上期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元2.已知函数,,且,则()A.3 B.3或7 C.5 D.5或83.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.4.已知集合,,若,则实数的值可以为()A. B. C. D.5.已知平面向量,满足,且,则与的夹角为()A. B. C. D.6.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切7.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.8.复数的虚部为()A.—1 B.—3 C.1 D.29.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,则()A.α∥β且∥α B.α⊥β且⊥βC.α与β相交,且交线垂直于 D.α与β相交,且交线平行于10.已知某几何体的三视图如图所示,则该几何体的体积是()A. B.64 C. D.3211.已知实数满足不等式组,则的最小值为()A. B. C. D.12.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.14.连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为______________.15.在中,,,,则________,的面积为________.16.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动点到定点的距离比到轴的距离多.(1)求动点的轨迹的方程;(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.18.(12分)在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.(1)求曲线的方程;(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.19.(12分)如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.20.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.21.(12分)已知点为椭圆上任意一点,直线与圆交于,两点,点为椭圆的左焦点.(1)求证:直线与椭圆相切;(2)判断是否为定值,并说明理由.22.(10分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.2、B【解析】
根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题3、B【解析】
基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题.4、D【解析】
由题意可得,根据,即可得出,从而求出结果.【详解】,且,,∴的值可以为.故选:D.【点睛】考查描述法表示集合的定义,以及并集的定义及运算.5、C【解析】
根据,两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且,所以,所以,所以,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.6、D【解析】
由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【点睛】本题主要考查直线与圆的位置关系,属于基础题.7、B【解析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.8、B【解析】
对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.9、D【解析】
试题分析:由平面,直线满足,且,所以,又平面,,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D.考点:平面与平面的位置关系,平面的基本性质及其推论.10、A【解析】
根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.11、B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.12、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
基本事件总数n126,其中三种颜色的球都有包含的基本事件个数m72,由此能求出其中三种颜色的球都有的概率.【详解】解:袋中有2个红球,3个白球和4个黄球,从中任取4个球,基本事件总数n126,其中三种颜色的球都有,可能是2个红球,1个白球和1个黄球或1个红球,2个白球和1个黄球或1个红球,1个白球和2个黄球,所以包含的基本事件个数m72,∴其中三种颜色的球都有的概率是p.故答案为:.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.14、【解析】
连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率.故答案为:【点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.15、【解析】
利用余弦定理可求得的值,进而可得出的值,最后利用三角形的面积公式可得出的面积.【详解】由余弦定理得,则,因此,的面积为.故答案为:;.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考查计算能力,属于基础题.16、【解析】
利用正弦定理边化角可得,从而可得,进而求解.【详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:【点睛】本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)证明见解析,定点【解析】
(1)设,由题意可知,对的正负分情况讨论,从而求得动点的轨迹的方程;(2)设其方程为,与抛物线方程联立,利用韦达定理得到,所以,所以直线的方程可表示为,即,所以直线恒过定点.【详解】(1)设,动点到定点的距离比到轴的距离多,,时,解得,时,解得.动点的轨迹的方程为或(2)证明:如图,设,,由题意得(否则)且,所以直线的斜率存在,设其方程为,将与联立消去,得,由韦达定理知,,①显然,,,,将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点.【点睛】本题主要考查了动点轨迹,考查了直线与抛物线的综合,是中档题.18、(1);(2)是定值,.【解析】
(1)设出M的坐标为,采用直接法求曲线的方程;(2)设AB的方程为,,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.【详解】(1)设动点M的坐标为,由知∥,又在直线上,所以P点坐标为,又,点为的中点,所以,,,由得,即;(2)设直线AB的方程为,代入得,设,,则,,设,则,所以AT的直线方程为即,令,则,所以D点的坐标为,同理E点的坐标为,于是,,所以,从而,所以是定值.【点睛】本题考查了直接法求抛物线的轨迹方程、直线与抛物线位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.19、(1)见解析(2)【解析】
(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.【详解】(1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.20、(1),,表示以为圆心为半径的圆;为抛物线;(2)【解析】
(1)消去参数的直角坐标方程,利用,即得的直角坐标方程;(2)由直线与抛物线相切,求导可得切线斜率,再由直线与圆相切,故切线与圆心与切点连线垂直,可求解得到切点坐标,即得解.【详解】(1)消去参数的直角坐标方程为:.的极坐标方程.∵,.当时表示以为圆心为半径的圆;为抛物线.(2)设切点为,由于,则切线斜率为,由于直线与圆相切,故切线与圆心与切点连线垂直,故有,直线的直角坐标方程为,所以的极坐标方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东外语外贸大学《微积分》2023-2024学年第一学期期末试卷
- 广东生态工程职业学院《体育科学研究与方法》2023-2024学年第一学期期末试卷
- 广东岭南职业技术学院《羽毛球IV》2023-2024学年第一学期期末试卷
- 十二月职位心得总结
- 【红对勾】2020-2021学年高中物理(人教版)必修二6-3-万有引力定律-课后巩固提高
- 【名师一号】2022届高三历史一轮复习调研试题:选修一-历史上重大改革回眸-2
- 【-学案导学设计】2020-2021学年高中人教B版数学必修四课时作业:第三章-章末检测(B)
- 【金版学案】2014-2021学年人教版高中英语必修三练习:Unit-2-第四学时
- 安徽省亳州市涡阳县大寺学校2024-2025学年第一学期七年级期末考试语文试卷(含答案)
- 初一美术教师工作总结:寻找创意和启发学生的天赋
- 供电公司应急演练培训
- 高中英语U4-The-Words-That-Changed-A-Nation教学课件
- 年项目经理讲安全课
- 朱砂行业分析
- 如何防范勒索软件和网络勒索攻击
- T-CI 228-2023 宁静小区建设与评价技术规范
- 二年级数学综合素质评价专项方案
- 读书分享遥远的救世主
- 成人有创机械通气气道内吸引技术操作解读护理课件
- 通信安全生产培训课件
- 智能胶囊内镜导航算法研究
评论
0/150
提交评论