版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市珊瑚中学2025届数学高一上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A. B.C. D.2.函数在区间上的最小值为()A. B.C. D.3.函数的定义域为A B.C. D.4.根据表中的数据,可以断定方程的一个根所在的区间是()x-101230.3712.727.3920.09A. B.C. D.5.已知函数y=a+sinbx(b>0且b≠1)的图象如图所示,那么函数y=logb(x-a)的图象可能是()A. B.C. D.6.下列集合与集合相等的是()A. B.C. D.7.已知函数,若对任意,总存在,使得,则实数的取值范围是()A. B.C. D.8.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.9.在一段时间内,若甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,且甲乙两人各自行动.则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.48 B.0.32C.0.92 D.0.8410.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数经过点,则______12.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)13.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.14.设函数,若函数在上的最大值为M,最小值为m,则______15.在正方体中,直线与平面所成角的正弦值为________16.写出一个值域为,在区间上单调递增的函数______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,其倾斜角为.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积.18.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上最大值为3,求的值.19.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有两个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.20.函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当x∈[-2,2]时,求f(x)的值域.21.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】如图为等腰直角三角形旋转而成的旋转体这是两个底面半径为,母线长4的圆锥,故S=2πrl=2π××4=故答案为D.2、C【解析】求出函数的对称轴,判断函数在区间上的单调性,根据单调性即可求解.【详解】,对称轴,开口向上,所以函数在上单调递减,在单调递增,所以.故选:C3、C【解析】要使得有意义,要满足真数大于0,且分母不能为0,即可求出定义域.【详解】要使得有意义,则要满足,解得.答案为C.【点睛】常见的定义域求解要满足:(1)分式:分母0;(2)偶次根式:被开方数0;(3)0次幂:底数0;(4)对数式:真数,底数且;(5):;4、D【解析】将与的值代入,找到使的,即可选出答案.【详解】时,.时,.时,.时,时,.因为.所以方程的一个根在区间内.故选:D.【点睛】本题考查零点存定理,函数连续,若存在,使,则函数在区间上至少有一个零点.属于基础题.5、C【解析】由三角函数的图象可得a>1,且最小正周期T=<π,所以b>2,则y=logb(x-a)是增函数,排除A和B;当x=2时,y=logb(2-a)<0,排除D,故选C.6、C【解析】根据各选项对于的集合的代表元素,一一判断即可;【详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C7、C【解析】先将不等式转化为对应函数最值问题:,再根据函数单调性求最值,最后解不等式得结果.【详解】因为对任意,总存在,使得,所以,因为当且仅当时取等号,所以,因为,所以.故选:C.【点睛】对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即;,8、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.9、C【解析】根据题意求得甲乙都不去参观博物馆的概率,结合对立事件的概率计算公式,即可求解.【详解】由甲去参观市博物馆的概率为0.8,乙去参观市博物馆的概率为0.6,可得甲乙都不去参观博物馆的概率为,所以甲乙两人至少有一个去参观博物馆的概率是.故选:C.10、D【解析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、##0.5【解析】将点代入函数解得,再计算得到答案.【详解】,故,.故答案为:12、【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.13、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12014、2【解析】令,证得为奇函数,从而可得在的最大值和最小值之和为0,进而可求出结果.【详解】设,定义域为,则,所以,即,所以为奇函数,所以在的最大值和最小值之和为0,令,则因为,所以函数的最大值为,最小值为,则,∴故答案为:2.15、【解析】连接AC交BD于O点,设交面于点E,连接OE,则角CEO就是所求的线面角,因为AC垂直于BD,AC垂直于,故AC垂直于面.设正方体的边长为2,则OC=,OE=1,CE,此时正弦值为故答案为.点睛:求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;高二时还会学到空间向量法,可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.16、【解析】综合考虑值域与单调性即可写出满足题意的函数解析式.【详解】,理由如下:为上的减函数,且,为上的增函数,且,,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由斜率,再利用点斜式即可求得直线方程;(2)由直线的方程,分别令为,得到纵截距与横截距,即可得到直线与两坐标轴所围成的三角形的面积.【详解】(1)直线方程为:,即.(2)由(1)令,则;令,则.所以直线与两坐标轴所围成的三角形的面积为:.【点睛】本题考查直线的点斜式方程,直线截距的意义,三角形的面积,属于基础题.18、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.19、(1);(2);(3).【解析】(1)当a=1时,利用对数函数的单调性,直接解不等式f(x)1即可;(2)化简关于x的方程f(x)+2x=0,通过分离变量推出a的表达式,通过解集中恰有两个元素,利用二次函数的性质,即可求a的取值范围;(3)在R上单调递减利用复合函数的单调性,求解函数的最值,∴令,化简不等式,转化为求解不等式的最大值,然后求得a的范围【详解】(1)当时,,∴,解得,∴原不等式的解集为.(2)方程,即为,∴,∴,令,则,由题意得方程在上只有两解,令,,结合图象可得,当时,直线和函数的图象只有两个公共点,即方程只有两个解∴实数的范围.(3)∵函数在上单调递减,∴函数在定义域内单调递减,∴函数在区间上最大值为,最小值为,∴,由题意得,∴恒成立,令,∴对,恒成立,∵在上单调递增,∴∴,解得,又,∴∴实数的取值范围是.【点睛】本题考查函数的综合应用,复合函数的单调性以及指对复合型函数的最值的求法,利用换元法将指对复合型函数转化为二次函数求最值是关键,考查转化思想以及分类讨论思想的应用,属于难题20、(1);(2).【解析】(1)由最大值求出,由周期求出,由求出,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论