




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市秦淮区2025届数学高二上期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.与直线关于轴对称的直线的方程为()A. B.C. D.2.已知等差数列的公差,记该数列的前项和为,则的最大值为()A.66 B.72C.132 D.1983.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.4.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假5.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.6.下列结论中正确的有()A.若,则 B.若,则C.若,则 D.若,则7.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的类似问题:把150个完全相同的面包分给5个人,使每个人所得面包数成等差数列,且使较大的三份面包数之和的是较小的两份之和,则最大的那份面包数为()A.30 B.40C.50 D.608.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B.C. D.9.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的表面积为()A. B.C.8 D.1210.已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A. B.2C.3 D.011.若,则n的值为()A.7 B.8C.9 D.1012.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题.“今有城墙厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半……”题意是:“两只老鼠从城墙的两边相对分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半……”则小老鼠第三天穿城墙______尺;若城墙厚40尺,则至少在第________天相遇14.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;15.如图,在平行六面体中,底面是边长为1的正方形,的长度为2,且,则的长度为________16.设函数,.若对任何,,恒成立,求的取值范围______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知圆台下底面圆的直径为,是圆上异于、的点,是圆台上底面圆上的点,且平面平面,,,、分别是、的中点.(1)证明:平面;(2)若直线上平面且过点,试问直线上是否存在点,使直线与平面所成的角和平面与平面的夹角相等?若存在,求出点的所有可能位置;若不存在,请说明理由.18.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.19.(12分)已知的内角的对边分别为a,,若向量,且(1)求角的值;(2)已知的外接圆半径为,求周长的最大值.20.(12分)已知圆经过点和,且圆心在直线上(1)求圆的标准方程;(2)直线过点,且与圆相切,求直线的方程;(3)设直线与圆相交于两点,点为圆上的一动点,求的面积的最大值21.(12分)等差数列中,,(1)求数列的通项公式;(2)若满足数列为递增数列,求数列前项和22.(10分)已知圆的方程为(1)求圆的圆心及半径;(2)是否存在直线满足:经过点,且_________________?如果存在,求出直线的方程;如果不存在,请说明理由从下列三个条件中任选一个补充在上面问题中并作答:条件①:被圆所截得的弦长最长;条件②:被圆所截得的弦长最短;条件③:被圆所截得的弦长为注:如果选择多个条件分别作答,按第一个解答计分
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.2、A【解析】根据等差数列的公差,求得其通项公式求解.【详解】因为等差数列的公差,所以,则,所以,由,得,所以或12时,该数列的前项和取得最大值,最大值为,故选:A3、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.4、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.5、C【解析】作出辅助线,找到异面直线与所成角,进而利用余弦定理及勾股定理求出各边长,最后利用余弦定理求出余弦值.【详解】如图所示,把三棱柱补成四棱柱,异面直线与所成角为,由勾股定理得:,,∴故选:C6、D【解析】根据基本初等函数的导数和运算法则分别计算函数的导数,即可判断选项.【详解】A.若,则,故A错误;B.若,则,故B错误;C.若,则,故C错误;D.若,则,故D正确.故选:D7、C【解析】根据题意得到递增等差数列中,,,从而化成基本量,进行计算,再计算出,得到答案.【详解】根据题意,设递增等差数列,首项为,公差,则所以解得所以最大项.故选:C8、C【解析】抛物线焦点为,准线方程为,由得或所以,故答案为C考点:1、抛物线的定义;2、直线与抛物线的位置关系9、B【解析】首先确定几何体的空间结构特征,然后求解其表面积即可.【详解】由题意知,该几何体是一个由8个全等的正三角形围成的多面体,正三角形的边长为:,正三角形边上的一条高为:,所以一个正三角形的面积为:,所以多面体的表面积为:.故选:B10、C【解析】根据条件知:两圆的圆心的所在的直线与两圆的交点所在的直线垂直,以及两圆的交点的中点在两圆的圆心的所在的直线上,由此得到方程,得解.【详解】由已知两圆的交点与两圆的圆心的所在的直线垂直,,所以,又因为两圆的交点的中点在两圆的圆心所在的直线上,所以,解得:,所以,故选.【点睛】此题主要考查圆与圆的位置关系,解答此题的关键是需知两圆的圆心所在的直线与两圆的交点所在的直线垂直,并且两圆的交点的中点在两圆的圆心所在的直线上,此题属于基础题.11、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D12、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①.##0.25②.6【解析】由题意知小老鼠每天打洞的距离是以1为首项,以为公比的等比数列,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,即可算出小老鼠第三天穿城墙的厚度,再根据等比数列求和公式,构造等式,即可得解.【详解】由题意知,小老鼠每天打洞的距离是以1为首项,以为公比的等比数列,前天打洞之和为,∴小老鼠第三天穿城墙的厚度为;大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前天打洞之和为,∴两只老鼠第天打洞穿墙的厚度之和为,且数列为递增数列,而,,又城墙厚40尺,所以这两只老鼠至少6天相遇.故答案为:;6.14、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.15、【解析】设一组基地向量,将目标用基地向量表示,然后根据向量的运算法则运算即可【详解】设,则有:则有:根据,解得:故答案为:16、【解析】先把原不等式转化为恒成立,构造函数,利用恒成立,求出的取值范围.【详解】因为对任何,,所以对任何,,所以在上为减函数.,,所以恒成立,即对恒成立,所以,所以.即的取值范围是.故答案为:.【点睛】恒(能)成立问题求参数的取值范围:①参变分离,转化为不含参数的最值问题;②不能参变分离,直接对参数讨论,研究的单调性及最值;③特别地,个别情况下恒成立,可转换为(二者在同一处取得最值).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,点与点重合.【解析】(1)证明出,利用面面垂直的性质可证得结论成立;(2)以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,分析可知,设点,利用空间向量法结合同角三角函数的基本关系可得出关于的方程,解出的值,即可得出结论.【小问1详解】证明:因为为圆的一条直径,且是圆上异于、的点,故,又因平面平面,平面平面,平面,所以平面.【小问2详解】解:存在,理由如下:如图,以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,则,,,,,,由直线平面且过点,以及平面,得,设,则,,,设平面的法向量为,则则,即,取,得,易知平面的法向量,设直线与平面所成的角为,平面与平面的夹角为,则,,由,得,即,解得,所以当点与点重合时,直线与平面所成的角和平面与平面的夹角相等.18、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的顶点在原点,焦点在x轴上,且过一点P(2,m),可设抛物线的方程为y2=2px(p>0),P(2,m)到焦点的距离为3,即有P到准线的距离为6,即23,解得p=2,即抛物线的标准方程为y2=4x;(2)联立方程化简,得x2﹣6x+1=0设交点为A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8点O到直线l的距离d,所以△AOB的面积为S|AB|•d82【点睛】本题考查抛物线的方程的求法及抛物线定义的应用,考查待定系数法的运用,考查求焦点弦AB与原点构成的△AOB面积,属于中档题19、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函数恒等变换公可得,从而可求出角的值,(2)利用正弦定理求出,再利用余弦定理结合基本不等式可得的最大值为4,从而可求出三角形周长的最大值【小问1详解】由,得
,由正弦定理,得,即.在中,由,得.又,所以.【小问2详解】根据题意,得,由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为所以.所以的周长的最大值为
.20、(1)(2)或(3)【解析】(1)解法一,根据题意设圆的标准方程为,进而待定系数法求解即可;解法二:由题知圆心在线段的垂直平分线上,进而结合题意得圆的圆心与半径,写出方程;(2)分直线的斜率存在与不存在两种情况讨论求解即可;(3)由几何法求弦长得,进而到直线距离的最大值为,再计算面积即可.【小问1详解】解:解法一:设圆的标准方程为,由已知得,解得,所以圆的标准方程为;解法二:由圆经过点和,可知圆心在线段的垂直平分线上,将代入,得,即,半径,所以圆的标准方程为;【小问2详解】解:当直线的斜率存在时,设,即,由直线与圆相切,得,解得,此时,当直线的斜率不存在时,直线显然与圆相切所以直线的方程为或;【小问3详解】解:圆心到直线的距离,所以,则点到直线距离的最大值为,所以的面积的最大值21、(1)或(2)【解析】(1)利用等差数列通项公式,可构造方程组求得,由此可得通项公式;(2)由(1)可得,利用分组求和法,结合等差等比求和公式可得结果.【小问1详解】设等差数列的公差为,则,解得:或,当时,;当时,.综上,或【小问2详解】由(1)当数列为递增数列,则,设,.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版 (新课标)必修4 生活与哲学2 用对立统一的观点看问题教学设计及反思
- 班主任工作心得范文(20篇)
- 2025医院消防安全个人工作总结(4篇)
- 2025年读书的心得体会范文(18篇)
- 小学美术赣美版二年级下册第2课 造型多样的生活用品教学设计及反思
- 2025-2026年自有房地产经营活动的创新与发展
- 《职场应聘技巧》课件
- 2025酒吧光棍节活动策划方案(19篇)
- 《气象万千:气候变化与影响》课件
- 富蕴长廊施工方案
- 2023年中荆投资控股集团有限公司招聘笔试模拟试题及答案解析
- 护士节趣味运动会主持词
- -活出心花怒放的生命 课件 心理健康
- 2023年软件正版化工作总结八篇
- 酒店报销水单经典模板
- 给水泵检修方案
- 《运营管理》第2版题库与参考答案
- KEGG代谢通路中文翻译
- GB∕T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法)
- 梅州市部分饮用水源保护区调整方案
- 地面沉降监测技术要求
评论
0/150
提交评论