版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白城市通榆一中2025届高一上数学期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.242.若直线与直线相交,且交点在第一象限,则直线的倾斜角的取值范围是A. B.C. D.3.函数在上最大值与最小值之和是()A. B.C. D.4.设,,且,则A. B.C. D.5.某校高一年级有180名男生,150名女生,学校想了解高一学生对文史类课程的看法,用分层抽样的方式,从高一年级学生中抽取若干人进行访谈.已知在女生中抽取了30人,则在男生中抽取了()A.18人 B.36人C.45人 D.60人6.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.7.已知的定义域为,则函数的定义域为A. B.C. D.8.某四面体的三视图如图,则该四面体的体积是A.1 B.C. D.29.半径为,圆心角为弧度的扇形的面积为()A. B.C. D.10.已知实数满足,则函数的零点在下列哪个区间内A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知奇函数满足,,若当时,,则______12.某同学在研究函数
f(x)=(x∈R)
时,分别给出下面几个结论:①等式f(-x)=-f(x)在x∈R时恒成立;②函数f(x)的值域为(-1,1);③若x1≠x2,则一定有f(x1)≠f(x2);④方程f(x)=x在R上有三个根其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)13.已知集合,,则___________.14.函数定义域为____.15.计算______.16.函数恒过定点________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)用五点法作函数在区间上的图象;(2)解关于的方程.18.已知函数.(1)若函数的图象关于直线x=对称,且,求函数的单调递增区间.(2)在(1)的条件下,当时,函数有且只有一个零点,求实数b的取值范围.19.如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA=BF∶FD,求证:EF∥平面PBC.20.某工厂以xkg/h的速度生产运输某种药剂(生产条件要求边生产边运输且3<x≤10),每小时可以获得的利润为100(2x+1+(1)要使生产运输该药品3h获得的利润不低于4500元,求x(2)x为何值时,每小时获得的利润最小?最小利润是多少?21.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足,.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A2、C【解析】联立方程得交点,由交点在第一象限知:解得,即是锐角,故,选C.3、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.4、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围5、B【解析】先计算出抽样比,即可计算出男生中抽取了多少人.【详解】解:女生一共有150名女生抽取了30人,故抽样比为:,抽取的男生人数为:.故选:B.6、B【解析】,由,得,,时,为,故选B7、B【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域8、B【解析】在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为.故选B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图9、A【解析】由扇形面积公式计算【详解】由题意,故选:A10、B【解析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选B【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,可得是以周期为周期函数,由奇函数的性质以及已知区间上的解析式可求值,从而计算求解.【详解】因为,即是以周期为的周期函数.为奇函数且当时,,,当时,所以故答案为:12、①②③【解析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由只有一个根说明④错误【详解】对于①,任取,都有,∴①正确;对于②,当时,,根据函数的奇偶性知时,,且时,,②正确;对于③,则当时,,由反比例函数的单调性以及复合函数知,在上是增函数,且;再由的奇偶性知,在上也是增函数,且时,一定有,③正确;对于④,因为只有一个根,∴方程在上有一个根,④错误.正确结论的序号是①②③.故答案为:①②③【点睛】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.13、【解析】根据并集的定义可得答案.【详解】,,.故答案为:.14、∪【解析】根据题意列出满足的条件,解不等式组【详解】由题意得,即,解得或,从而函数的定义域为∪.故答案为:∪.15、7【解析】根据对数与指数的运算性质计算即可得解.【详解】解:.故答案为:7.16、【解析】根据函数图象平移法则和对数函数的性质求解即可【详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,因为的图象恒过定点,所以恒过定点,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)画图见解析;(2)或.【解析】(1)根据列表、描点、连线的基本步骤,画出函数在的大致图像即可;(2)由题意得:,解得或,,分类求解即可得解方程的解集.【详解】(1),∴,,的变化如下表:0200的图象如图:(2)令,则,或,,或,,的解集为:或.【点睛】用“五点法”作的简图,主要是通过变量代换,设,由取,,,,来求出相应的,通过列表,计算得出五点坐标,描点后得出图象18、(1)(2)或【解析】(1)先求得函数的解析式,再整体代入法去求函数单调递增区间即可;(2)依据函数的单调性及零点个数列不等式组即可求得实数b的取值范围.【小问1详解】由,可得又函数的图象关于直线x=对称,则,则故由,可得则函数的单调递增区间为【小问2详解】由(1)可知当时,,由得,由得则函数在上单调递增,在上单调递减,由函数有且只有一个零点,可得或,解得或19、见解析【解析】连接AF并延长交BC于M.连接PM,因为AD∥BC,∴,又,∴,所以EF∥PM,从而得证.试题解析:连接AF并延长交BC于M.连接PM.因AD∥BC,所以=.又由已知=,所以=.由平面几何知识可得EF∥PM,又EF⊄平面PBC,PM⊂平面PBC,所以EF∥平面PBC.20、(1)[6,10];(2)当x为4kg/h时,每小时获得的利润最小,最小利润为1300元【解析】(1)由题设可得2x+1+8x-2≥15,结合3<x≤10求不等式的解集即可(2)应用基本不等式求y=100(2x+1+8x-2)的最小值,并求出对应的x【小问1详解】依题意得:3×100(2x+1+8x-2)≥4500,即2x+1+8x-2由3<x≤10,故8x-2>0,可得x2-9x+18≥0,即(x-3)(x-6)≥0,解得x≤3或x≥6∴x的取值范围为[6,10].【小问2详解】设每小时获得的利润为y.y=100(2x+1+8x-2)=100[2(x-2)+8x-2+5]≥100[22(x-2)(8x-2)+5]=100(8+5)=1300,当2(x-2)=于是当生产运输速度为4kg/h,每小时获得的利润最小,最小值为1300元21、(1)88.5万元(2)该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【解析】(1)先确定甲乙合作社投入量,再分别代入对应收益函数,最后求和得结果,(2)先根据甲收益函数,分类讨论,再根据对应函数单调性确定最值取法,最后比较大小确定最大值【详解】解:(1)当甲合作社投入为25万元时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁中医药大学《C程序设计及医学应用》2023-2024学年第一学期期末试卷
- 兰州理工大学《医学实验基本技术与设备》2023-2024学年第一学期期末试卷
- 集美大学《口腔人文医学》2023-2024学年第一学期期末试卷
- 湖南文理学院芙蓉学院《社会保障发展前沿》2023-2024学年第一学期期末试卷
- 湖南高速铁路职业技术学院《世界建筑装饰风格与流派》2023-2024学年第一学期期末试卷
- 重庆邮电大学《计算机学科课程教学论》2023-2024学年第一学期期末试卷
- 重庆健康职业学院《工程造价及管理》2023-2024学年第一学期期末试卷
- 中原工学院《软件质量保证与测试实验》2023-2024学年第一学期期末试卷
- 浙江农林大学暨阳学院《野生动植物保护与管理》2023-2024学年第一学期期末试卷
- 中国石油大学(华东)《表演基础元素训练》2023-2024学年第一学期期末试卷
- 建设项目施工现场春节放假期间的安全管理方案
- GB/T 19867.5-2008电阻焊焊接工艺规程
- 2023年市场部主管年终工作总结及明年工作计划
- 国有资产出租出借审批表(学校事业单位台账记录表)
- 30第七章-农村社会治理课件
- 考研考博-英语-东北石油大学考试押题三合一+答案详解1
- 出国学生英文成绩单模板
- 植物细胞中氨基酸转运蛋白的一些已知或未知的功能
- 山东省高等学校精品课程
- 三菱张力控制器LE-40MTA-E说明书
- 生活垃圾填埋场污染控制标准
评论
0/150
提交评论