版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏林芝地区二高2025届高二数学第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为F,点A在抛物线上,直线FA与抛物线的准线交于点M,O为坐标原点.若,且,则()A.1 B.2C.3 D.42.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃3.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.14.若圆与直线相切,则实数的值为()A. B.或3C. D.或5.在中,内角所对的边为,若,,,则()A. B.C. D.6.等差数列的前项和为,若,,则()A.12 B.18C.21 D.277.已知动圆过定点,并且与定圆外切,则动圆的圆心的轨迹是()A.抛物线 B.椭圆C.双曲线 D.双曲线的一支8.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.9.已知数列中,,则()A. B.C. D.10.某高中从3名男教师和2名女教师中选出3名教师,派到3个不同的乡村支教,要求这3名教师中男女都有,则不同的选派方案共有()种A.9 B.36C.54 D.10811.已知是空间的一个基底,若,,若,则()A. B.C.3 D.12.如图,在棱长为2的正方体中,点P在截面上(含边界),则线段的最小值等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某中学高一年级有420人,高二年级有460人,高三年级有500人,用分层抽样的方法抽取部分样本,若从高一年级抽取21人,则从高三年级抽取的人数是__________14.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.15.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.16.已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回,在第1次抽到代数题的条件下,第2次抽到几何题的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在直四棱柱中,底面ABCD是菱形,点E,F分别在棱,上,且,(1)证明:点在平面BEF内;(2)若,,,求直线与平面BEF所成角的正弦值18.(12分)已知函数(Ⅰ)解关于的不等式;(Ⅱ)若关于的不等式恒成立,求实数的取值范围19.(12分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求长.20.(12分)在①,②,③,三个条件中任选一个,补充在下面的问题中,并解答.设数列是公比大于0的等比数列,其前项和为,数列是等差数列,其前项和为.已知,,,_____________.(1)请写出你选择条件的序号____________;并求数列和的通项公式;(2)求和.21.(12分)如图,在四棱锥中,底面为直角梯形,平面平面,,.(1)证明:平面;(2)已知,,,且直线与平面所成角的正弦值为,求平面与平面夹角的余弦值.22.(10分)在柯桥古镇的开发中,为保护古桥OA,规划在O的正东方向100m的C处向对岸AB建一座新桥,使新桥BC与河岸AB垂直,并设立一个以线段OA上一点M为圆心,与直线BC相切的圆形保护区(如图所示),且古桥两端O和A与圆上任意一点的距离都不小于50m,经测量,点A位于点O正南方向25m,,建立如图所示直角坐标系(1)求新桥BC的长度;(2)当OM多长时,圆形保护区的面积最小?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,由和在抛物线上,求出和,利用求出p.【详解】过A作AP垂直x轴与P.抛物线的焦点为,准线方程为.设,因为,所以,解得:.因为在抛物线上,则.所以,即,解得:.故选:D2、D【解析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.3、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.4、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.5、B【解析】利用正弦定理角化边得到,再利用余弦定理构造方程求得结果.【详解】,,由余弦定理得:,,.故选:B.6、B【解析】根据等差数列的前项和为具有的性质,即成等差数列,由此列出等式,求得答案.【详解】因为为等差数列的前n项和,且,,所以成等差数列,所以,即,解得=18,故选:B.7、D【解析】结合双曲线定义的有关知识确定正确选项.【详解】圆圆心为,半径为,依题意可知,结合双曲线的定义可知,的轨迹为双曲线的一支.故选:D8、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A9、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.10、C【解析】根据给定条件利用排列并结合排除法列式计算作答.【详解】从含有3名男教师和2名女教师的5名教师中任选3名教师,派到3个不同的乡村支教,不同的选派方案有种,选出3名教师全是男教师的不同的选派方案有种,所以3名教师中男女都有的不同的选派方案共有种故选:C11、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C12、B【解析】根据体积法求得到平面的距离即可得【详解】由题意的最小值就是到平面的距离正方体棱长为2,则,,设到平面的距离为,由得,解得故选:B二、填空题:本题共4小题,每小题5分,共20分。13、25【解析】由条件先求出抽样比,从而可求出从高三年级抽取的人数.【详解】由题意抽样比例:则从高三年级抽取的人数是人故答案为:2514、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.15、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.16、.【解析】设事件:第1次抽到代数题,事件:第2次抽到几何题,求得,结合条件概率的计算公式,即可求解.【详解】由题意,从5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出不再放回,设事件:第1次抽到代数题,事件:第2次抽到几何题,则,,所以在第1次抽到代数题的条件下,第2次抽到几何题的概率为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设、、、AC与BD的交点为O,由直四棱柱的性质构建空间直角坐标系,确定、的坐标可得,即可证结论.(2)由题设,求出、、的坐标,进而求得面BEF的法向量,利用空间向量夹角的坐标表示求直线与平面BEF所成角的正弦值【小问1详解】由题意,,设,,,设AC与BD的交点为O,以O为坐标原点,分别以BD,AC所在直线为x,y轴建立如下空间直角坐标系,则,,,,所以,,得,即,因此点在平面BEF内【小问2详解】由(1)及题设,,,,,所以,,设为平面BEF的法向量,则,令,即设直线与平面BEF所成角为,则18、(Ⅰ);(Ⅱ)【解析】(Ⅰ)用找零点法去绝对值,然后再解不等式.(Ⅱ)将原函数转化为分段函数,再结合函数图像求得其最小值.将恒成立转化为试题解析:(Ⅰ)或或或所以原不等式解集为(Ⅱ),由函数图像可知,所以要使恒成立,只需考点:1绝对值不等式;2恒成立问题;3转化思想19、(1);(2).【解析】(1)利用公式直接将椭圆的参数方程转化为普通方程即可.(2)首先求出直线的参数方程,代入椭圆的普通方程得到,再利用直线参数方程的几何意义求弦长即可.【详解】(1)因为曲线(为参数),所以曲线的普通方程为:.(2)由题知:直线的参数方程为(为参数),将直线的参数方程代入,得.,.所以.20、(1)选①,,;选②,,;选③,,;(2),【解析】(1)选条件①根据等比数列列出方程求出公比得通项公式,再由等差数列列出方程求出首项与公差可得通项公式,选②③与①相同的方法求数列的通项公式;(2)根据等比数列、等差数列的求和公式解计算即可.【小问1详解】选条件①:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为d,,,解得,,.选条件②:设等比数列的公比为q,,,解得或,,,.设等差数列的公差为,,,解得,,选条件③:设等比数列的公比为,,,解得或,,,.设等差数列的公差为,,,解得,【小问2详解】由(1)知,,21、(1)证明过程见解析;(2).【解析】(1)利用平面与平面垂直的性质得出直线与平面垂直,进而得出平面;(2)建立空间直角坐标系即可求解.【小问1详解】证明:因为平面平面,交线为且平面中,所以平面又平面所以又,且所以平面【小问2详解】解:由(1)知,平面且所以、、两两垂直因此以原点,建立如图所示的空间直角坐标系因为,,,设所以,,,,由(1)知,平面所以为平面的法向量且因为直线与平面所成角的正弦值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购水泥黄沙合同模板
- 采购水果蓝莓合同模板
- 酒店加盟合同模板
- 采矿权转让合同(2篇)
- 林地林木收购合同模板
- 承包建设小区合同模板
- 购货验收合同模板
- 门窗安装长期合同模板
- 茂名商用电脑租赁合同模板
- 高速特许经营合同模板
- 屋面光伏发电施工方案
- 期中考试卷(试题)-2024-2025学年四年级上册数学人教版
- 师范生的教育调查报告范文(3篇)
- 期中核心素养卷(试题)-2024-2025学年数学四年级上册苏教版
- 医疗器械质量安全风险会商管理制度
- 明德小学防溺水教育学校师生家庭协调联动会议记录
- 新会计准则会计科目表(中英文对照)
- 2021年煤矿安全生产考核机制
- OD调查表(最新整理)
- 管道支架安装图集[共53页]
- 九年级数学竞赛培优专题及答案 18 圆的对称性
评论
0/150
提交评论