版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰市宁城县2025届高一数学第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角为()A. B.C. D.2.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内3.一个空间几何体的三视图如图所示,则该几何体的表面积为A.7B.9C.11D.134.过点且平行于直线的直线方程为()A. B.C. D.5.若,,则等于()A. B.3C. D.6.要得到函数的图像,需要将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位7.已知,且,则的最小值为()A.3 B.4C.6 D.98.幂函数的图象不过原点,则()A. B.C.或 D.9.用斜二测画法画一个水平放置平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.10.下列直线中,倾斜角为45°的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.12.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.13.已知函数,关于方程有四个不同的实数解,则的取值范围为__________14.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____15.化简=________16.写出一个同时具有下列三个性质的函数:___________.①函数为指数函数;②单调递增;③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)的图像关于原点对称,当时,.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间.18.如图,在正方体中,、分别为、的中点,与交于点.求证:(1);(2)平面平面.19.已知函数.(1)判断函数f(x)的奇偶性;(2)讨论f(x)的单调性;(3)解不等式.20.已知函数(1)判断f(x)的奇偶性,并说明理由;(2)用定义证明f(x)在(1,+∞)上单调递增;(3)求f(x)在[-2,-1]上的值域21.设函数,(1)求函数的值域;(2)设函数,若对,,,求正实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先根据直线方程得斜率,再求倾斜角.【详解】因为直线,所以直线斜率为,所以倾斜角为,选C.【点睛】本题考查直线斜率以及倾斜角,考查基本分析求解能力,属基本题.2、B【解析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明3、B【解析】该几何体是一个圆上面挖掉一个半球,S=2π×3+π×12+=9π.4、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A5、A【解析】根据已知确定,从而求得,进而求得,根据诱导公式即求得答案.【详解】因为,,所以,则,故,故选:A6、A【解析】直接按照三角函数图像的平移即可求解.【详解】,所以是左移个单位.故选:A7、A【解析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【详解】因为,故,故,当且仅当时等号成立,故的最小值为3.故选:A.【点睛】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.8、B【解析】根据幂函数的性质求参数.【详解】是幂函数,解得或或幂函数的图象不过原点,即故选:B9、C【解析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形面积为.故选:C10、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线的倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题12、【解析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.13、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.14、【解析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【点睛】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.15、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案为【点睛】本题考查了对数的运算法则,属于基础题16、(答案不唯一)【解析】根据给定条件①可得函数的解析式,再利用另两个条件判断作答.【详解】因函数是指数函数,则令,且,于是得,由于单调递增,则,又,解得,取,所以.故答案为:(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调递减区间为,单调递增区间为【解析】(1)根据奇函数定义结合已知可得;(2)先求时的单调区间,然后由对称性可得.【小问1详解】∵函数f(x)的图像关于原点对称.∴.当时,,又时,,∴当时,.∴【小问2详解】当时,函数的图像开口向下,对称轴为直线,∴函数f(x)在[0,3]上单调递增,在[3,+∞)上单调递减.又∵函数f(x)的图像关于原点对称,∴函数f(x)的单调递减区间为;单调递增区间为.18、(1)证明见解析(2)证明见解析【解析】(1)证明出四边形为平行四边形,可证得结论成立;(2)证明出平面,平面,利用面面平行的判定定理可证得结论成立.【小问1详解】证明:在正方体中,且,因为、分别为、的中点,则且,所以,四边形为平行四边形,则.【小问2详解】证明:因为四边形为正方形,,则为的中点,因为为中点,则,平面,平面,所以,平面,因为,平面,平面,所以,平面,因为,因此,平面平面.19、(1)奇函数(2)在上单调递增(3)【解析】(1)依据奇偶函数定义去判断即可;(2)以定义法去证明函数的单调性;(3)把抽象不等式转化为整式不等式再去求解即可.【小问1详解】由得,所以函数f(x)的定义域为,关于原点对称又因为,故函数为奇函数【小问2详解】设任意,,则又,则,则,即故在上单调递增【小问3详解】由(2)知,函数在上单调递增,所以由,可得,解得,所以不等式的解集为20、(1)f(x)为奇函数,理由见解析(2)证明见解析(3)[-,-2]【解析】(1)根据奇偶性的定义判断;(2)由单调性的定义证明;(3)由单调性得值域【小问1详解】f(x)为奇函数由于f(x)的定义域为,关于原点对称,且,所以f(x)为在上的奇函数(画图正确,由图得出正确结论,也可以得分)【小问2详解】证明:设任意,,有由,得,,即,所以函数f(x)在(1,+∞)上单调递增【小问3详解】由(1),(2)得函数f(x)在[-2,-1]上单调递增,故f(x)的最大值为,最小值为,所以f(x)在[-2,-1]的值域为[-,-2]21、(1);(2).【解析】(1)由题可得,利用基本不等式可求函数的值域;(2)由题可求函数在上的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 永金融知识竞赛策划
- 厨房安全卫生
- 【辽海版】《综合实践活动》八年级下册【辽海版】《综合实践活动》八年级上册6.1防毒禁毒多宣传·毒品预防知多少 课件
- 医疗机构财务会计聘用合同
- 家具制造存储协议
- 投标联合体文化融合协议
- 城市安全用车租赁合同样本
- 建筑混凝土工程皮卡租赁协议
- 城市广场绿化工程合同协议书
- 体育馆玻璃膜施工合同
- 上海汽车集团股份有限公司本量利运用分析
- 机械行业职业生涯规划全生涯
- 家用电风扇项目可行性研究报告
- 违法建筑整治工作计划4篇
- 中医康复科年终总结
- 埃德温·戈登的音乐能力倾向理论及其启示
- 上海交通大学1997-2007年有机化学考研真题
- 行政查房护士长汇报
- Part 3-4 Unit 8 Green Earth 课件-【中职专用】高一英语精研课堂(高教版2021·基础模块2)
- 非同步除颤技术操作考核评分标准
- 人工智能图像处理与分析项目技术可行性方案
评论
0/150
提交评论