安徽省青阳县一中2025届数学高二上期末质量检测模拟试题含解析_第1页
安徽省青阳县一中2025届数学高二上期末质量检测模拟试题含解析_第2页
安徽省青阳县一中2025届数学高二上期末质量检测模拟试题含解析_第3页
安徽省青阳县一中2025届数学高二上期末质量检测模拟试题含解析_第4页
安徽省青阳县一中2025届数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省青阳县一中2025届数学高二上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知半径为2的圆经过点(5,12),则其圆心到原点的距离的最小值为()A.10 B.11C.12 D.132.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴广交会的四个不同地方服务,不同的分配方案有()种A.· B.·C. D.3.已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象是()A. B.C. D.4.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.865.某高中学校高二和高三年级共有学生人,为了解该校学生的视力情况,现采用分层抽样的方法从三个年级中抽取一个容量为的样本,其中高一年级抽取人,则高一年级学生人数为()A. B.C. D.6.已知命题p:,总有,则为()A.,使得 B.,使得C.,总有 D.,总有7.记为等差数列的前n项和,有下列四个等式,甲:;乙:;丙:;丁:.如果只有一个等式不成立,则该等式为()A.甲 B.乙C.丙 D.丁8.已知F1(-1,0),F2(1,0)是椭圆的两个焦点,过F1的直线l交椭圆于M,N两点,若△MF2N的周长为8,则椭圆方程为()A. B.C. D.9.不等式的解集是()A. B.C.或 D.或10.已知函数,若,则()A. B.0C.1 D.211.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.12.已知椭圆方程为:,则其离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列的前n项和满足:,则________14.已知函数的图像在点处的切线方程是,则=______15.不等式的解集是________16.若关于的不等式的解集为R,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,过圆外一点作圆的两条切线,,,为切点,设为圆上的一个动点.(1)求的取值范围;(2)求直线的方程.18.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线方程;(2)若、是曲线上两点,点满足求直线的方程.19.(12分)已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由20.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.21.(12分)已知圆C:(1)若点,求过点的圆的切线方程;(2)若点为圆的弦的中点,求直线的方程22.(10分)已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由条件可得圆心的轨迹是以点为圆心,半径为2的圆,然后可得答案.【详解】因为半径为2的圆经过点(5,12),所以圆心的轨迹是以点为圆心,半径为2的圆,所以圆心到原点的距离的最小值为,故选:B2、B【解析】先按要求分为四组,再四个不同地方,四个组进行全排列.【详解】两个组各2人,两个组各1人,属于部分平均分组,要除以平均分组的组数的全排列,故分组方案有种,再将分得的4组,分配到四个不同地方服务,则不同的分配方案有种.故选:B3、A【解析】利用导数与函数的单调性之间的关系及导数的几何意义即得.【详解】由函数f(x)的导函数y=f′(x)的图像自左至右是先减后增,可知函数y=f(x)图像的切线的斜率自左至右先减小后增大,且,在处的切线的斜率为0,故BCD错误,A正确.故选:A.4、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.5、B【解析】先得到从高二和高三年级抽取人,再利用分层抽样进行求解.【详解】设高一年级学生人数为,因为从三个年级中抽取一个容量为的样本,且高一年级抽取人,所以从高二和高三年级抽取人,则,解得,即高一年级学生人数为.故选:B6、B【解析】由含有一个量词的命题的否定的定义求解.【详解】因为命题p:,总有是全称量词命题,所以其否定为存在量词命题,即,使得,故选:B7、D【解析】分别假设甲、乙、丙、丁不成立,验证得到答案【详解】设数列的公差为,若甲不成立,则,由①,③可得,此时与②矛盾;A错,若乙不成立,则,由①,③可得,此时;与②矛盾;B错,若丙不成立,则,由①,③可得,此时;与②矛盾;C错,若丁不成立,则,由①,③可得,此时;,D对,故选:D.8、A【解析】由题得c=1,再根据△MF2N的周长=4a=8得a=2,进而求出b的值得解.【详解】∵F1(-1,0),F2(1,0)是椭圆的两个焦点,∴c=1,又根据椭圆的定义,△MF2N的周长=4a=8,得a=2,进而得b=,所以椭圆方程为.故答案为A【点睛】本题主要考查椭圆的定义和椭圆方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.9、A【解析】确定对应二次方程的解,根据三个二次的关系写出不等式的解集【详解】,即为,故选:A10、D【解析】求出函数的导数,直接代入即可求值.【详解】因为,所以,所以,所以.故选:D.11、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.12、B【解析】根据椭圆的标准方程,确定,计算离心率即可.【详解】由知,,,,即,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用“当时,;当时,"即可得出.【详解】当时,当时,,不适合上式,数列的通项公式.故答案为:.14、3【解析】根据导数几何意义,可得的值,根据点M在切线上,可求得的值,即可得答案.【详解】由导数的几何意义可得,,又在切线上,所以,则=3,故答案为:3【点睛】本题考查导数的几何意义的应用,考查分析理解的能力,属基础题.15、【解析】先将分式不等式化为一元二次不等式,再根据一元二次不等式的解法解不等式即可【详解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集为{x|-4<x<2}故答案为.【点睛】本题主要考查分式不等式及一元二次不等式的解法,比较基础16、【解析】分为和考虑,当时,根据题意列出不等式组,求出的取值范围.【详解】当得:,满足题意;当时,要想保证关于的不等式的解集为R,则要满足:,解得:,综上:的取值范围为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出PM,就可以求PQ的范围;(2)使用待定系数法求出切线的方程,再求求切点的坐标,从而可以求切点的连线的方程.【小问1详解】如下图所示,因为圆的方程可化为,所以圆心,半径,且,所以,故取值范围为.【小问2详解】可知切线,中至少一条的斜率存在,设为,则此切线为即,由圆心到此切线的距离等于半径,即,得所以两条切线的方程为和,于是由联立方程组得两切点的坐标为和所以故直线的方程为即18、(1);(2).【解析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.19、(1),;(2)存在或,使得,理由见解析.【解析】(1)根据离心率,及求出,,进而得到椭圆方程及用m,n表示点M的坐标;(2)假设存在,根据得到,表达出点坐标,得到,结合得到,从而求出答案.【小问1详解】由离心率可知:,又,,解得:,,故椭圆C:,直线PA为:,令得:,所以;【小问2详解】存在或,使得,理由如下:假设,使得,则,其中,直线:,令得:,则,,解得:,其中,故,所以,所以或20、(1)(2)证明见解析(3)【解析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时单调递增,,适合题意;当时,,此时在内,,在内,,故,显然时,,不满足当恒成立,综上述:.21、(1)或(2)【解析】(1)求出圆的圆心与半径,分过点的直线的斜率不存和存在两种情况,利用圆心到直线距离等于半径,即可求出切线方程;(2)根据圆心与弦中点的连线垂直线,可求出直线的斜率,进而求出结果.【小问1详解】解:由题意知圆心的坐标为,半径,当过点的直线的斜率不存在时,方程为由圆心到直线的距离知,此时,直线与圆相切当过点的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为故过点的圆的切线方程为或【小问2详解】解:∵圆心,,即,又,∴,则.22、(1);(2)答案见解析,直线过定点.【解析】(1)首先根据顶点为得到,再根据离心率为得到,从而得到椭圆C的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论