湖北省安陆市第一中学2025届数学高二上期末预测试题含解析_第1页
湖北省安陆市第一中学2025届数学高二上期末预测试题含解析_第2页
湖北省安陆市第一中学2025届数学高二上期末预测试题含解析_第3页
湖北省安陆市第一中学2025届数学高二上期末预测试题含解析_第4页
湖北省安陆市第一中学2025届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省安陆市第一中学2025届数学高二上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点为,准线为,焦点在准线上的射影为点,过任作一条直线交抛物线于两点,则为()A.锐角 B.直角C.钝角 D.锐角或直角2.中国景德镇陶瓷世界闻名,其中青花瓷最受大家的喜爱,如图1这个精美的青花瓷花瓶,它的颈部(图2)外形上下对称,基本可看作是离心率为的双曲线的一部分绕其虚轴所在直线旋转所形成的曲面,若该颈部中最细处直径为16厘米,瓶口直径为20厘米,则颈部高为()A.10 B.20C.30 D.403.在三棱锥中,,,则异面直线PC与AB所成角的余弦值是()A. B.C. D.4.函数的单调递减区间为()A. B.C. D.5.与直线关于轴对称的直线的方程为()A. B.C. D.6.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.27.从集合{2,3,4,5}中随机抽取一个数m,从集合{1,3,5}中随机抽取一个数n,则向量=(m,n)与向量=(1,-1)垂直的概率为()A. B.C. D.8.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.19.若双曲线的两个焦点为,点是上的一点,且,则双曲线的渐近线与轴的夹角的取值范围是()A. B.C. D.10.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;11.若x,y满足约束条件,则的最大值为()A.2 B.3C.4 D.512.设为可导函数,且满足,则曲线在点处的切线的斜率是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与两坐标轴相交于,两点,则线段的垂直平分线的方程为___________.14.正四棱柱中,,,点为底面四边形的中心,点在侧面四边形的边界及其内部运动,若,则线段长度的最大值为__________15.函数y=x3+ax2+bx+a2在x=1处有极值10,则a=________.16.已知方程,若此方程表示椭圆,则实数的取值范围是________;若此方程表示双曲线,则实数的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在如图所示的几何体中,四边形是平行四边形,,,,四边形是矩形,且平面平面,,点是线段上的动点(1)证明:;(2)设平面与平面的夹角为,求的最小值18.(12分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)19.(12分)已知椭圆C:过两点(1)求C的方程;(2)定点M坐标为,过C右焦点的直线与C交于P,Q两点,判断是否为定值?若是,求出该定值,若不是,请说明理由20.(12分)在平面直角坐标系中,已知点,,过点的动直线与过点的动直线的交点为P,,的斜率均存在且乘积为,设动点Р的轨迹为曲线C.(1)求曲线C的方程;(2)若点M在曲线C上,过点M且垂直于OM的直线交C于另一点N,点M关于原点O的对称点为Q.直线NQ交x轴于点T,求的最大值.21.(12分)已知为坐标原点,圆的圆心在轴上,点、均在圆上.(1)求圆的标准方程;(2)若直线与椭圆交于两个不同的点、,点在圆上,求面积的最大值.22.(10分)设函数过点(1)求函数的单调区间和极值(要列表);(2)求函数在上的最大值和最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设出直线方程,联立抛物线方程,利用韦达定理,求得,根据其结果即可判断和选择.【详解】为说明问题,不妨设抛物线方程,则,直线斜率显然不为零,故可设直线方程为,联立,可得,设坐标为,则,故,当时,,;当时,,;故为锐角或直角.故选:D.2、B【解析】设双曲线方程为,根据已知条件可得的值,由可得双曲线的方程,再将代入方程可得的值,即可求解.【详解】因为双曲线焦点在轴上,设双曲线方程为由双曲线的性质可知:该颈部中最细处直径为实轴长,所以,可得,因为离心率为,即,可得,所以,所以双曲线的方程为:,因瓶口直径为20厘米,根据对称性可知颈部最右点横坐标为,将代入双曲线可得,解得:,所以颈部高为,故选:B3、A【解析】分别取、、的中点、、,连接、、、、,由题意结合平面几何的知识可得、、或其补角即为异面直线PC与AB所成角,再由余弦定理即可得解.【详解】分别取、、的中点、、,连接、、、、,如图:由可得,所以,在,,可得由中位线的性质可得且,且,所以或其补角即为异面直线PC与AB所成角,在中,,所以异面直线AB与PC所成角的余弦值为.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角4、A【解析】先求定义域,再由导数小于零即可求得函数的单调递减区间.【详解】由得,所以函数的定义域为,又,因为,所以由得,解得,所以函数的单调递减区间为.故选:A.5、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.6、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.7、A【解析】根据分步计数乘法原理求得所有的)共有12个,满足两个向量垂直的共有2个,利用古典概型公式可得结果.【详解】集合{2,3,4,5}中随机抽取一个数,有4种方法;从集合{1,3,5}中随机抽取一个数,有3种方法,所以,所有的共有个,由向量与向量垂直,可得,即,故满足向量与向量垂直的共有2个:,所以向量与向量垂直的概率为,故选A.【点睛】本题主要考查分步计数乘法原理的应用、向量垂直的性质以及古典概型概率公式的应用,属于中档题.在解古典概型概率题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.8、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.9、B【解析】由条件结合双曲线的定义可得,然后可得,然后可求出的范围即可.【详解】由双曲线的定义可得,结合可得当点不为双曲线的顶点时,可得,即当点为双曲线的顶点时,可得,即所以,所以,所以所以双曲线的渐近线与轴的夹角的取值范围是故选:B10、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B11、C【解析】作出不等式组对应的可行域,再利用数形结合分析求解.【详解】解:作出不等式组对应的可行域为如图所示的阴影部分区域,由得,它表示斜率为纵截距为的直线系,当直线平移到点时,纵截距最大,最大.联立直线方程得得.所以.故选:C12、D【解析】由题,为可导函数,,即曲线在点处的切线的斜率是,选D【点睛】本题考查导数的定义,切线的斜率,以及极限的运算,本题解题的关键是对所给的极限式进行整理,得到符合导数定义的形式二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由直线的方程求出直线的斜率以及,两点坐标,进而可得线段的垂直平分线的斜率以及线段的中点坐标,利用点斜式即可求解.【详解】由直线可得,所以直线的斜率为,所以线段的垂直平分线的斜率为,令可得;令可得;即,,所以线段的中点坐标为,所以线段的垂直平分线的方程为,整理得.故答案为:.14、【解析】根据正四棱柱的性质、矩形的性质,线面垂直的判定定理,结合勾股定理进行求解即可.【详解】当位于点时,因为是正方形,所以,由正四棱柱的性质可知,平面,因为平面,所以,因为平面,所以平面,平面,所以,因此当位于点时,满足题意,当点位于边点时,若,在矩形中,,因为,所以,因此,所以有,此时,又平面,所以平面,故点的轨迹在线段上,,所以线段长度的最大值为.故答案为:关键点睛:利用特殊点判断出点的轨迹是解题的关键.15、4【解析】∵y′=3x2+2ax+b,∴或当a=-3,b=3时,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=416、①.②.【解析】分别根据椭圆、双曲线的标准方程的特征建立不等式即可求解.【详解】当方程表示椭圆时,则有且,所以的取值范围是;当方程表示双曲线时,则有或,所以的取值范围是.故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)要证,只需证平面,只需证(由勾股定理可证),,只需证平面,只需证(由平面平面可证),(由可证),即可证明结论.(2)以为原点,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系写出点与点的坐标由于轴,可设,可得出与的坐标设为平面的法向量,求出法向量.是关于的一个式子,求出的取值范围,即可求出的最小值【小问1详解】在中,,,,所以,所以所以是等腰直角三角形,即因为,所以又因为平面平面,平面平面,,所以平面又平面,所以又因为,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因为,,所以,所以又,,平面所以平面又平面,所以【小问2详解】以为原点,所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系则,因为轴,可设,可求得,设为平面的法向量则令,解得,所以又因为是平面的法向量所以,因为,所以所以当时,取到最小值18、详见解析【解析】利用反证法,即可推得矛盾.【详解】假设有理数,则,则,为整数,的尾数只能是0,1,4,5,6,9,的尾数只能是0,1,4,5,6,9,则的尾数是0,2,8,由得,尾数为0,则的尾数是0,而的尾数为0或5,这与为最简分数,的最大公约数是1,相矛盾,所以假设不正确,是无理数.19、(1);(2)为定值.【解析】(1)根据题意,列出的方程组,求解即可;(2)对直线的斜率是否存在进行讨论,当直线斜率存在时,设出直线的方程,联立椭圆方程,利用韦达定理,转化,求解即可.【小问1详解】因为椭圆过两点,故可得,解得,故椭圆方程为:.【小问2详解】由(1)可得:,故椭圆的右焦点的坐标为;当直线的斜率不存在时,此时直线的方程为:,代入椭圆方程,可得,不妨取,又,故.当直线的斜率存在时,设直线的方程为:,联立椭圆方程,可得:,设坐标为,故可得,则.综上所述,为定值.【点睛】本题考察椭圆方程的求解,以及椭圆中的定值问题;处理问题的关键是合理的利用韦达定理,将目标式进行转化,属中档题.20、(1)(2)【解析】(1)设点坐标为,根据两直线的斜率之积为得到方程,整理即可;(2)设,,,根据设、在椭圆上,则,再由,则,即可表示出直线、的方程,联立两直线方程,即可得到点的纵坐标,再根据弦长公式得到,令,则,最后利用基本不等式计算可得;【小问1详解】解:设点坐标为,定点,,直线与直线的斜率之积为,,【小问2详解】解:设,,,则,,所以又,所以,又即,则直线:,直线:,由,解得,即,所以令,则,所以因为,当且仅当即时取等号,所以的最大值为;21、(1);(2).【解析】(1)求出圆心坐标,可求得圆的半径,进而可得出圆的标准方程;(2)求得点到直线的距离,将直线的方程与椭圆的方程联立,求得的表达式,利用三角形的面积公式结合基本不等式可求得结果.【小问1详解】解:由题知,线段的中点为,直线的斜率,所以线段的中垂线为,即为,所以圆的圆心为轴与的交点,所以圆的半径,所以圆的标准方程为.【小问2详解】解:由题知:圆心到直线的距离,因为,所以圆心到直线的距离,所以到直线的距离,设点、,联立可得,,,则,所以,,所以,所以,所以当且仅当,即时等号成立,所以当时,取得最大值.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论