七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)_第1页
七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)_第2页
七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)_第3页
七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)_第4页
七年级数学上册第二单元《整式加减》-解答题专项知识点总结(含解析)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.已知多项式﹣3x2+mx+nx2﹣x+3的值与x无关,求(2m﹣n)2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x2+(m-1)x+3,由于关于字母x的二次多项式-3x2+mx+nx2-x+3的值与x无关,即不含x的项,所以n-3=0,m-1=0,然后解出m、n,代入计算(2m-n)2017的值即可.【详解】合并同类项得(n﹣3)x2+(m﹣1)x+3,根据题意得n﹣3=0,m﹣1=0,解得m=1,n=3,所以(2m﹣n)2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.2.如图,已知等腰直角三角形的边,等腰直角三角形的边,且,点、、放置在一条直线上,联结.(1)求三角形的面积;(2)如果点是线段的中点,联结、得到三角形,求三角形的面积;(3)第(2)小题中的三角形与三角形面积哪个较大?大多少?(结果都可用、代数式表示,并化简)解析:(1)(2)(3)三角形的面积比三角形的面积大,大.【分析】(1)由题意知(同旁内角互补,两条直线平行),所以四边形是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得;(3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)(2)(3),∵,∴,即三角形的面积比三角形的面积大,大.【点睛】本题是一道综合题,考查了三角形的面积公式底高,多项式的化简.3.给定一列分式:,,,,…(其中).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得.(2)第7个分式为,第8个分式为.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1),,,……∴任意一个分式除以前面一个分式,都得.(2)∵由式子…,发现分母上是y1,y2,y3,y4,……所以第7个式子分母上是y7,第8个分母上是y8;分子上是x3,x5,x7,x9,……所以第7个式子分子上是x15,第8个分子上是x17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为,第8个分式为.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.4.化简并求值:已知,小明错将“”看成“”,算得结果.(1)计算的表达式;(2)小强说正确结果的大小与的取值无关,对吗?请说明理由.(3)若,,求正确结果的代数式的值.解析:(1);(2)小强的说法对,正确结果的取值与无关,理由见解析;(3)0.【分析】(1)由2A+B=C得B=C-2A,将C、A代入根据整式的乘法计算可得B;(2)将A、B代入2A-B,根据整式的加减运算法则进行化简,由化简后的代数式中无字母c可知其值与c无关;(3)将a、b的值代入计算即可.【详解】解:(1)∵,∴.B;(2).因正确结果中不含,所以小强的说法对,正确结果的取值与无关;(3)将,代入(2)中的代数式,得:.【点睛】本题主要考查整式的乘法,熟练掌握整式的乘法法则是解题的关键.5.求多项式的值,其中,.解析:,-2.【分析】原式合并同类项后代入字母的值计算即可.【详解】解:原式,当,时,原式.【点睛】本题考查了整式的化简求值,正确的将原式合并同类项是解决此题的关键.6.有理数在数轴上的位置如图所示,化简代数式.解析:【分析】首先判断出,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知,,,,.故答案为:.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.7.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n个图形有_______颗五角星.解析:(1)16,19;(2)6061,.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得.【详解】解:(1)观察发现,第1个图形★的颗数是,第2个图形★的颗数是,第3个图形★的颗数是,第4个图形★的颗数是,所以第5个图形★的颗数是,第6个图形★的颗数是.故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是,第n个图形★的颗数是.故答案为:6061,.【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.8.先化简,再求值:,其中.解析:,12【分析】根据题意,对原式利用整式的混合运算法则进行化简,然后将x,y的值代入求解即可.【详解】解:原式,当时,原式.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.9.已知,当时,求的值.解析:【分析】根据题意,先根据整式的混合运算法则化简,再将a,b的值代入即可.【详解】,当时,原式.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.10.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a,以15%的速度增长,表示在m的基础上增长a的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.11.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n次后,折痕有条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为条,第2次对折后的折痕条数为条,第3次对折后的折痕条数为条,第4次对折后的折痕条数为条,归纳类推得:第n次对折后的折痕条数为条,因为,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n次后的折痕条数为条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.12.用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数.解析:(1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4).【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.13.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1)图②有

个三角形;图③有

个三角形;(2)按上面的方法继续下去,第个图形中有多少个三角形(用的代数式表示结论).解析:(1),;(2)【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第个图形中有个三角形.【详解】解:(1)根据图形可得:,;(2)发现每个图形都比起前一个图形多个,第个图形中有个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.14.化简与求值:(1)若,则式子的值为______;(2)若,则式子的值为______;(3)若,请你仿照以上求式子值的方法求出的值.解析:(1)0;(2);(3)-10.【分析】(1)把a的值代入计算即可;(2)把a+b的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b的值计算即可.【详解】解:(1);(2);(3).【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.已知多项式(1)把这个多项式按的降冥重新排列;(2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1);(2)该多项式的次数为4,二次项是,常数项是.【分析】(1)按照x的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式.(2)∵中次数最高的项是-5x4,∴该多项式的次数为4,它的二次项是,常数项是.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.16.计算:(1)(2)解析:(1);(2)【分析】(1)直接根据有理数的混合运算法则即可求解.(2)直接根据整式的加减混合运算法则即可求解.【详解】解:(1)原式;(2)原式.【点睛】此题主要考查有理数的加减运算和整式的加减运算,熟练掌握运算法则是解题关键.17.已知单项式﹣2x2y的系数和次数分别是a,b.(1)求ab﹣ab的值;(2)若|m|+m=0,求|b﹣m|﹣|a+m|的值.解析:(1)﹣2;(2)1.【分析】(1)根据单项式的系数是数字因数,次数是字母指数的和,可得a、b的值,根据代数式求值,可得答案;(2)非正数的绝对值是它的相反数,可得m的取值范围,根据差的绝对值是大数减小数,可得答案.【详解】解:由题意,得a=﹣2,b=2+1=3.ab﹣ab=(﹣2)3﹣(﹣2)×3=﹣8+6=﹣2;(2)由|m|+m=0,得m≤0.|b﹣m|﹣|a+m|=b﹣m+(a+m)=b+a=3+(﹣2)=1;【点睛】本题考查了单项式的系数和次数的性质,掌握单项式中数字因数叫做单项式的系数,所有的字母的指数之和为次数是解决本题的关键.18.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(______)2=______.根据以上规律填空:(1)13+23+33+…+n3=(______)2=[______]2.(2)猜想:113+123+133+143+153=______.解析:1+2+3+4+5;225;1+2+…+n;;11375【解析】分析:观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空;(1)、根据上述规律填空,然后把1+2+…+n变为个(n+1)相乘,即可化简;(2)、对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.详解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)、∵1+2+…+n=(1+n)+[2+(n-1)]+…+[+(n-+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)、113+123+133+143+153=13+23+33+…+153-(13+23+33+…+103)=(1+2+…+15)2-(1+2+…+10)2=1202-552=11375.点睛:此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.19.小马虎在计算一个多项式减去的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是.求这个多项式;算出此题的正确的结果.解析:(1);(2).【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a2+3a﹣1+2a2﹣a+5=3a2+2a+4,即这个多项式是3a2+2a+4;(2)由(1)可得:3a2+2a+4﹣(2a2+a﹣5)=3a2+2a+4﹣2a2﹣a+5=a2+a+9即此题的正确的结果是a2+a+9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.20.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当,,求的值”.小明做完后对同桌说:“老师给的条件是多余的,这道题不给的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b的代数式相加为0,即可说明.【详解】解==当时原式==-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键.21.已知多项式中不含项,求代数式的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含项即可求出m的值,再把所求式子合并同类项后代入m的值计算即可.【详解】解:,由题意,得4-2m=0,所以m=2;所以=.当m=2时,原式==.【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.22.已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.(1)求3A﹣(4A﹣2B)的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+A)﹣(2b+B)的值.解析:(1)(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)﹣3.【分析】(1)先化简原式,再分别代入A和B的表达式,去括号并合并类项即可;(2)先代入A和B的表达式并去括号并合并类项,由题意可令x和x2项的系数为零,求解出a和b的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+(A﹣2B)=﹣3﹣2+=﹣3.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.23.观察下列各式:(1)-a+b=-(a-b);(2)2-3x=-(3x-2);(3)5x+30=5(x+6);(4)-x-6=-(x+6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目:已知a2+b2=5,1-b=-2,求-1+a2+b+b2的值.解析:见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a2+b2=5,1-b=-2,∴-1+a2+b+b2=(a2+b2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.24.先化简,再求值:,其中,.解析:【解析】试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题原式当时,原式25.我们将不大于的正整数随机分为两组.第一组按照升序排列得到,第二组按照降序排列得到,求的所有可能值.解析:1020100【分析】由题意知,对于代数式的任何一项:|ak-bk|(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若ak≤1010,且bk≤1010,则a1<a2<…<ak≤1010,1010≥bk>bk+1>…>b1010,则a1,a2,…ak,bk,……,b1010,共1011个数,不大于1010不可能;(2)若ak>1010,且bk>1010,则a1010>a1009>…>ak+1>ak>1010及b1>b2>…>bk>1010,则b1,……,bk,ak……a1010共1011个数都大于100,也不可能;∴|a1-b1|,……,|a1010-b1010|中一个数大于1010,一个数不大于1010,∴|a1-b1|+|a2-b2|+…+|a1010-b1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.26.已知,(1)关于的式子的取值与字母x的取值无关,求式子的值;(2)当且时,若恒成立,求的值。解析:(1)-14;(2),.【分析】(1)首先化简,然后根据其取值与字母x的取值无关列出m、n的方程,求出m、n的值,再代入求值即可;(2)首先化简,然后根据恒成立列出m、n的方程,求出m、n的值即可.【详解】解:(1),,,∵式子的取值与字母x的取值无关,∴3+2n=0,m-4=0,∴m=4,,∴;(2),,,,∵恒成立,∴,,∴,.【点睛】本题主要考查了整式的加减运算,熟练掌握去括号法则与合并同类项法则是解题关键.27.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n﹣1)(n+1)+1=n2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n﹣1)(n+1)+1=n2的规律,并熟练加以运用.28.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A表示数-3,将A点向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离为.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A,B两点间的距离为.(3)如果点A表示数,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示数为m,将A点向右移动n个单位长度,再向左移动P个单位长度,那么,请你猜想终点B表示什么数?A,B两点间的距离为多少?解析:(1)4,7;(2)1,2;(3)-92,88;(4)m+n-p,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A表示数-3,∴将A点向右移动7个单位长度,那么终点B表示的数是-3+7=4,A,B两点间的距离为4-(-3)=7,故答案为:4,7;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论