![会计数据分析DAA-1e-IRM-2018-v3_第1页](http://file4.renrendoc.com/view9/M01/18/31/wKhkGWch8aWAckvKAACoUpWK92I896.jpg)
![会计数据分析DAA-1e-IRM-2018-v3_第2页](http://file4.renrendoc.com/view9/M01/18/31/wKhkGWch8aWAckvKAACoUpWK92I8962.jpg)
![会计数据分析DAA-1e-IRM-2018-v3_第3页](http://file4.renrendoc.com/view9/M01/18/31/wKhkGWch8aWAckvKAACoUpWK92I8963.jpg)
![会计数据分析DAA-1e-IRM-2018-v3_第4页](http://file4.renrendoc.com/view9/M01/18/31/wKhkGWch8aWAckvKAACoUpWK92I8964.jpg)
![会计数据分析DAA-1e-IRM-2018-v3_第5页](http://file4.renrendoc.com/view9/M01/18/31/wKhkGWch8aWAckvKAACoUpWK92I8965.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Copyright©2019McGraw-HillEducation.Allrightsreserved.NoreproductionordistributionwithoutthepriorwrittenconsentofMcGraw-HillEducation.
Instructor’sResourceManual
DataAnalyticsforAccounting
1stEdition
VernonJ.Richardson
RyanA.Teeter
KatieL.Terrell
TABLEOFCONTENTS
TotheInstructor 3
AssignmentSchedulesIncludingallChapters 6
PresentationSuggestions 7
Chapter
DataAnalyticsinAccountingandBusiness……….7
DataPreparationandCleaning………………9
ModelingandEvaluation:GoingfromDefiningBusinessProblemsandDataUnderstandingtoAnalyzingDataandAnsweringQuestions……….11
Visualizations:UsingVisualizationsandSummariestoShareResultswithStakeholders………13
TheModernAuditandContinuousAuditing………………….…15
AuditDataAnalytics……………..17
GeneratingKeyPerformanceIndicators…………19
FinancialStatementAnalytics……………………21
LabIntroduction…………..…..23
RequestingRemoteDesktopAccounts……………...…………...24
UARKRemoteDesktopFrequentyAskedQuestions…………26
ShortGuidetoConnectingtotheRemoteDesktopatUARK………………28
Labs…………………...…………31
DAA1eSoftwareAcademicLicensesandDownloads…………...33
Chapter1Labs………………………35
Chapter2Labs………………………36
Chapter3Labs………………………39
Chapter4Labs………………………40
Chapter5Labs………………………41
Chapter6Labs………………………41
Chapter7Labs………………………43
Chapter8Labs………………………43
TOTHEINSTRUCTOR
Thisguideincludessuggestedassignmentschedules,topicaloutlines,chaptercommentsandobservations,andsuggestedteamexercisesbasedontheauthorsexperienceteachingdataanalytics.
AssignmentSuggestions.Thistextbookisnotdesignedtobeasurveyofdataanalyticsinaccounting.Instead,itisintendedtodevelopstudentskillstosupportaccountant’srolesasdataanalysts.Consequently,werecommendthattheassignmentsincludetheproblemsandlabsthatwilldeveloptheseskillsandrequirecriticalthinking.Differentinstructorswillteachthiscoursedifferently,somechoosingtoonlyusethelabsoronlyincludethetext.Othershopingtocoverthistextbookineightweeks,insteadofafullfifteen-weekperiod.Theassignmentsuggestionsassumethatthismaterialwillbecoveredoverfifteen-weekperiod.
BriefTopicalOutlines.TheseoutlinesaredesignedtoassistinstructorsincoordinatingclassroomdiscussionswithmaterialcoveredinthetextbookandthePowerPoints.TheBriefTopicalOutlinesidentifytopicsthatwebelieveareimportantenoughtomeritsomeclassroomdiscussion.Theoutlinesalsoincludereferencestoillustrationsinthetextbook,PowerPoints,questions,problems,andcasesthatmayserveasusefulsupplementstoyourclasspresentations.
CommentsandObservations.Youwillprobablyfindthatourcommentsandobservationssuggestcoverageofmoretopicsthanyourtimewillallow.Thisisbecauseourcommentsaredrawnfromtheexperiencesofthreeinstructorsovermanysemesters.Therefore,wesuggestthatyouborrowfromourcommentsthatwhichappealstoyouanddiscardthatwhichdoesnot.
CourseDescriptionandObjectives.
Forinformationonly,weusethefollowingcoursedescriptionandobjectives:
CourseDescription
DataAnalyticsischangingthebusinessworld-datasimplysurroundsus!Withsomuchdataavailableabouteachofus(i.e.,howweshop,whatweread,whatwe’vebought,whatmusicwelistento,wherewetravel,whowetrust,etc.),arguably,thereisthepotentialforanalyzingthatdatainawaythatcananswerfundamentalbusinessandaccountingquestionsandcreatevalue.
Accordingtotheresultsof18thAnnualGlobalCEOSurveyconductedbyPwC,manyCEOsputahighvalueonDataAnalytics,and80%ofthemplacedataminingandanalysisasthesecond-mostimportantstrategictechnologyforCEOs.Infact,perPwC’s6thAnnualDigitalIQsurveyofmorethan1,400leadersfromdigitalbusinesses,theareaofinvestmentthattopsCEOs’listofprioritiesisbusinessanalytics.“DataDriven:Whatstudentsneedtosucceedinarapidlychangingbusinessworld,”byPwC,
/us/en/faculty-resource/assets/PwC-Data-driven-paper-Feb2015.pdf
,postedFebruary2015,extractedJanuary9,2016.
Thistextbookaddresseswhatwebelievewillbeasimilarimpactofdataanalyticsonaccountingandauditing.Forexample,wearguethatdataanalyticswillplayanincreasinglycriticalroleinthefutureofaudit.InarecentForbesInsights/KPMGreport“Audit2020:AFocusonChange”,thevastmajorityofsurveyrespondentsbelieveboththat:
auditorsmustbetterembracetechnologyand
technologywillenhancethequality,transparencyandaccuracyoftheaudit.
Nolongerwillauditorsbesimplycheckingforerrors,misstatedaccounts,fraud,andriskinthefinancialstatements,ormerelyreporttheirfindingsattheendoftheaudit.Throughtheuseofdataanalytics,auditprofessionalswillbecollectingandanalyzingthecompany’sdatasimilartothewayabusinessanalystwouldtohelpmanagementmakebetterbusinessdecisions.Inourtextbook,weemphasizeauditdataanalyticsandallthetestingthatcanbedonetoperformaudittesting.
Dataanalyticsalsopotentiallyhasanimpactonfinancialreporting.WiththeuseofsomanyestimatesandvaluationsinFinancialAccounting,somebelievethatemployingDataAnalyticsmaysubstantiallyimprovethequalityoftheestimatesandvaluations.Likewise,theuseofXBRLdatagivesaccountantsaccesstomoretimelyandmoreextensiveaccountingdataforfinancialanalysis.
Thistextbookrecognizesthataccountantsdon’tneedtobecomedatascientists–theymayneverneedtobuildadatarepositoryordotherealhardcoredataanalyticsormachinelearning–however,wedoemphasizesevenskillsthatwebelieveanalytic-mindedaccountantsshouldhave,includingthefollowing:
DevelopinganAnalyticsMindset-recognizewhenandhowdataanalyticscanaddressbusinessquestions
DataScrubbingandDataPreparation–comprehendtheprocessneededtocleanandpreparethedatabeforeanalysis
DataQuality–recognizewhatismeantbydataquality,beitcompleteness,reliabilityorvalidity
DescriptiveDataAnalysis–performbasicanalysistounderstandthequalityoftheunderlyingdataanditsabilitytoaddressthebusinessquestion
DataAnalysisthroughDataManipulation–demonstrateabilitytosort,rearrange,mergeandreconfiguredatainamannerthatallowsenhancedanalysis.
DefiningandAddressingProblemsthroughStatisticalDataAnalysis–identifyandimplementanapproachthatwillusestatisticaldataanalysistodrawconclusionsandmakerecommendationsonatimelybasis
DataVisualizationandDataReporting–reportresultsofanalysisinanaccessiblewaytoeachvarieddecisionmakerandtheirspecificneeds
Consistentwiththeseskillswedesireinallaccountants,werecognizethatDataAnalyticsisaprocess.Theprocessbeginsbyidentifyingbusinessquestionsthatcanbeaddressedwithdata,andthentestthedata,refineourtestingandfinally,communicatethosefindingstomanagement.WedescribeourdataanalyticsprocessbyusinganestablisheddataanalyticsmodelcalledtheIMPACTCycle,byIssonandHarriott:
IdentifytheQuestion
MastertheData
PerformTestPlan
AddressandRefineResults
CommunicateInsights
TrackOutcomes
CourseObjectives
Aftercompletingthiscourse,studentsshouldbeableto:
Describeindetailthepurposeofdataanalyticsandhowitcancreatevalueforaccountants.
DescribetheIMPACTmodelandhowitcanbeusedtoaddressmostaccountingissuesthatcanbeaddressedbyaccountants.
Demonstrateproficiencyinmultiplesoftwaretoolstomanagedata,performtestanalyses,communicatefindingsthroughtext,tablesandvisualizations.
Explainhowdataanalyticscanbeusedinaccounting,auditing,managerialaccountingandfinancialaccountingtofindpatterns,errors,andanomaliesandfindinsightsusefultodecisionmaking.
Describeanddemonstratedifferenttypesoftestapproachesthatcanbeusedtogatherinsightsindecisionmaking.
NotetoInstructorswhoplanonUsingComprehensiveLabswithDillard’sdata:
TheuseofDillard’sdatarequiresgainingaccesstothedatahousedattheUniversityofArkansas.
Foryourstudentstogainaccess,youwillneedtofollowtheproceduresoutlinedbelow.
Pleaseallowuptooneweekforfullaccess.
Forinstructors,werecommendthatyourequeststudentaccountsinadvancetoyourfirstlabusingtheComprehensiveCasewhichusesDillard’sdata.Oneyouhavearemoteaccessaccount,youcanlogintoaccesstheUniversityofArkansasserverusingoneofthefollowingsystems:Windows10App,Windows,orMac.Guidelinesforlogginginwitheachofthesesystemscanbefoundbelow:
RequestingRemoteDesktopAccounts
LoggingintoUARKRemoteDesktop–Window10App
LoggingintoUARKRemoteDesktop–Mac
LoggingintoUARKRemoteDesktop–WindowsLegacy
StillhaveQuestions?
UARKRemoteDesktopFAQ
VernonJ.Richardson
RyanA.Teeter
KatieL.Terrell
ASSIGNMENTSCHEDULEINCLUDINGALLCHAPTERS—Assignments
PRIVATE
Chapter
Topic
WrittenAssignment
ObjectiveQuestions
1
DataAnalyticsinAccountingandBusiness
Questions1-8,1-13,Problems1-1,1-2,1-3,1-4
MC1-1to1-10
1
Labs(iftimepermits)
Lab1-1and1-3
2
DataPreparationandCleaning
Problem2-1,2-3,2-4,2-5
MC2-1to2-10
2
Labs(iftimepermits)
Lab2-2and2-4
3
ModelingandEvaluation:GoingfromDefiningBusinessProblemsandDataUnderstandingtoAnalyzingDataandAnsweringQuestions
Problem3-1,3-3,3-5.3-6
MC3-1to3-22
3
Labs(iftimepermits)
Lab3-3and3-4
4
Visualizations:UsingVisualizationsandSummariestoShareResultswithStakeholders
Problem4-2,4-3,4-8and4-9
MC4-1to4-15
4
Labs(iftimepermits)
Lab4-2and4-3
5
TheModernAuditandContinuousAuditing
Problem5-4and5-5
MC5-1to5-10
5
Labs(iftimepermits)
Lab5-3and5-4
6
AuditDataAnalytics
Problem6-3,6-5,and6-7
MC6-1to6-10
6
Labs(iftimepermits)
Lab6-3and6-4
7
GeneratingKeyPerformanceIndicators
Problem7-1,7-5and7-7
MC7-1to7-10
7
Labs(iftimepermits)
Lab7-2and7-3
8
FinancialStatementAnalytics
Problem8-1,8-3,8-5
MC8-1to8-10
8
Labs(iftimepermits)
Lab8-1and8-2
PRESENTATIONSUGGESTIONS
CHAPTER1
DataAnalyticsinAccountingandBusiness
BriefTopicalOutline
A. Introduction
1. WhatisDataAnalytics?(PowerPoints1-5–1-8)
2. HowdoesDataAnaltyicsAffectBusiness?(PowerPoints1-9–1-11)
3. HowdoesDataAnalyticsAffectAuditing?(PowerPoints1-12,1-13)
4. HowdoesDataAnalyticsAffectFinancialReporting?(PowerPoint1-14)
5. HowdoesDataAnalyticsAffectTaxes?(PowerPoint1-15)
B. IntroductiontotheIMPACTModel(PowerPoint1-16–1-18)
1. IdentifytheQuestions(PowerPoint1-19)
2. MastertheData(PowerPoint1-20)
3. PerformtheTestPlan(PowerPoint1-21)
4.AddressandRefineResults(PowerPoint1-22)
5. CommunicateInsights(PowerPoint1-23)
6. TrackOutcomes(PowerPoint1-24)
C. DataAnalyticsSkillsNeededbyAccountants(PowerPoints1-26–1-29)
D. Hands-onExampleoftheIMPACTModel(PowerPoints1-30)
1. IdentifytheQuestions(PowerPoint1-31)
2. MastertheData(PowerPoints1-32,33,34)
3. PerformtheTestPlan(PowerPoints1-35–1-38)
4.AddressandRefineResults(PowerPoints1-39,40)
5. CommunicateInsights(PowerPoint1-41)
6. TrackOutcomes(PowerPoint1-42)
E. Summary–(PowerPoint1-44)
CommentsandObservations
Inourfirstclassmeeting,wediscussnotonlyabouttheroleofaccountantsasinformationprovider,butalsohowthatroleissteadilychangingtobecomeaninterpreterofdata.Thatis,toactivelylooktodataandtheinterpretationofthatdatatohelpanswerbusinessproblemsbydecidewhatquestionsneedanswering,whatinformationneedstobecollected,buildorensurethattheinformationsystemiscollectingit,analyzethecollectedinformationtomeetitsintendedpurpose.
Wethenstartdefiningdataanalyticsandhowitcreatesvalueinbusinessandthenmorespecificallywhatdataanalyticshasdoneandhasthepotentialofdoinginauditing,managerialaccounting,financialreportingandtaxes.
WethenintroducetheIMPACTmodel.TheIMPACTmodelservesasafoundationforthischapter,andforeachremainingchapter.Wealsouseitasafoundationforeachofthelabsthroughoutthetext.Wediscusseachofthesesteps,onebyoneandtalkaboutwhateachstepentailsandwhyitisimportant.
Wespendsometimenamingtheskillsneededbyaccountantsandwhatwewilldointhetextbooktohelpgetthemthere.
WewrapupthechapterbyillustratingtheIMPACTmodelwiththereal-worldLendingClubdata.WegothrougheachstepoftheIMPACTmodelonebyone,askingwhattypesofquestionsLendingClubwouldlikelywantansweredandfocusinontheloandecisionofwhethertoextendaloanornot.Thediscussioncontinuesbyaskingwhatdatacouldbeusedtoanswerthesequestionsifwecouldgetanydatawewanted,etc.Ithenjumpintothedatawiththemtoshowthemwhatisthere.Wetalkaboutdatacleaning,datatransformationandwhatassumptionswewouldneedtomaketodothat.Wealsodosomepivottablesanalysisandanswerthequestionofwhyloanswererejectedandinverselywhyloansareaccepted.
WhileIhaven’tdoneityet,IwonderedhowtheclassdiscussionwouldchangeifwestartedwithillustratingtheIMPACTmodelandtheLendingClubdata.Therearealwaysprosandconsofusingaflippedclassroommodel,butitissomethingthatyoumightconsider.
Oneofthegoalsofchapter1isforthestudentstoopentheirmindsandreallylearnwhatdataanalyticscandoforaccountants.Ibelievethischapterprovidesagoodintroductionandfoundationforwhatwillbeincludedinthetextbookandstarttoaddresstheskillsneeded.
SuggestedTeamExercise
Justasthediscussionofthequestionsthatcouldbeansweredwithdataanalytics,Ihavethemthinkofauditingdataandthinkwhatauditingissues/questionsauditorshavewithsalesandhowthatcouldtheycouldbeaddressedwithsay,thecompletesalesjournal.Ithinkitishelpfulforthestudentstomeetinlittlegroupsandseeiftheycanaddressthattopicandthenreporttheirfindingsreadyforafullclassdiscussion.
CHAPTER2
DataPreparationandCleaning
BriefTopicalOutline
Introduction(Powerpoint2-2)
MastertheData(PowerPoint2-4)
TheUseofRelationalDatabases((PowerPoints2-5and2-6)
HowareDataStoredinRelationalDatabases(PowerPoints2-7–2-10)
TheUseofaDataDictionary(PowerPoint2-11)
Extract,TransformandLoad(PowerPoints2-13–2-14)
Step1:Determinethepurposeandscopeoftherequest(PowerPoint2-15)
Step2:ObtaintheData(PowerPoints2-16–2-20)
Step3:ValidatetheDataforCompleteness(PowerPoint2-21)
Step4:CleantheData(PowerPoint2-22)
Step5:LoadtheDataforDataAnalysis(PowerPoint2-23)
Summary(PowerPoint2-25)
CommentsandObservations
Aswejourneythroughtheimpactmodel,afteridentifyingthequestion,westartlookingatthedata.So,thediscussionmightbeginbysaying,ifwehadallavailabledatatoanswerthisquestion,whatdatawouldweuse.Weaskquestionslike:
Whatdataisavailabletoaddressthekeyquestion?Isthereasystemthatalreadycapturesthatdata?
Whatisthequalityofthedata?Isitreliable?Isitbiased?Whydoesthatmatter?
Wherediditcomefrom(internalvs.externalsources),etc.?Whydoesthatmatter?
Ilikegoingthroughthebasicsofrelationaldatabasesagain.Theywon’tadmittorememberingitfromtheirAIScourse,iftheywerefortunatetohavetakenonebeforethiscourse.Thiswillhelpthemunderstandhowdatamightcomefromtheirdatasetsandpreparethemforsomeofthelabswherejoiningdifferenttablesusingtheprimaryand/orforeignkeysmightberequired.IalsopointoutthedatadictionaryforadatasetlikeLendingCluborDillards(particularlyifyouhavealreadycoveredtheseinclassinChapter1).
Itisimportanttoknowwhatdatayouneed,andthenbeingabletoaskforthatdatainacompleteway.Youcertainlydon’twanttokeepgoingbacktothedatasourcetoaskforadditionaldata.Andyouprobablycan’tjustaskforallofthedatabecauseitisoftenjusttoobigtouseitall!Onceyouhavethedatayouneedtovalidatethatyougotwhatyouaskedforandassessthedataqualityandthencleanthedataandgetitreadyforitsintendeduse.AsnotedinChapter1,dataanalystsspendbetween50and90%oftheirtimecleaningandpreparingthedataaspartofETL(Extract,Load,andTransfer).Thefinalstepistoloadthedatainsometypeofanalysisprogram,whichoftendependsonthetestapproachused,yourownfamiliaritywiththesoftwarepackagesandwhetheryouwanttousemoreofananalysispackage(suchasExcelorSASorWeka,etc)oravisualizationprogram(suchasTableau).
SuggestedTeamExercise
GivenaccesstotheLendingClubdata,Iliketostarttheteamexercisebyhighlightaloanacceptance/rejectiondecisionthatabankmustmake.Andsaysomethinglike,asateam,“writedownallofthedatayou’dliketoknowaboutanindividualbeforedecidingwhethertoextendaloanandifyoudoextendaloan,theinterestratethatyouwouldlikelygivethem”.Allowtheteamafull8-15minutestoputtogetherthedataneeds.Iallowstudentstothenpresenttheirfindings.
IthentakeovertheclassdiscussionAfterthat,welookatthedatadictionarysayingwhatisIdownloadtherawdatasetoftheloanrejectiondecisionsmadebyLendingClub.Iletthemseewhatdataisavailableandwhatcharacteristicstheyhave–aretheynumeric,aretheyranked,aretheymachinereadable,etc.?Wethenopenthedatasetofloanrejections–Igenerallyuse2013asitwillfitinExcelandseewhatissuesthereareincleaningthedata.Forexample,howdoyoudoanalysisiftheloandatasaysyearsofworkexperience“10+”insteadof“10”?Howdoyoubuildthatintoyouranalysis?Whatdoyoudowithmissingdata?Theseareallimportantquestionsthattheywillneedtostartaddressingastheybecomedataanalysts!
CHAPTER3
ModelingandEvaluation:GoingfromDefiningBusinessProblemsandDataUnderstandingtoAnalyzingDataandAnsweringQuestions
BriefTopicalOutline
Introduction(PowerPoints3-2-3-5)
DataModelingandTestApproaches
Targetvs.Class(PowerPoint3-6)
SupervisedvsUnsupervisedApproaches(PowerPoints3-7-3-11)
ProfilingTestApproach(Powerpoints3-12-3-16)
DataReductionTestApproach(Powerpoints3-17-3-20)
RegressionTestApproach(Powerpoints3-21-3-24)
ClassificationTestApproach(Powerpoints3-25–3-32)
ClusteringTestApproach(Powerpoints3-33–3-36)
Summary(Powerpoint3-37)
CommentsandObservations
Inchapter3wedescribedatamodelingandvarioustestapproachesthataremostlikelytobeusedinaccountingandauditing.Ibeginbydifferentiatingbetweenatargetandaclass.Acreditscoreisagoodexampleofatarget,especiallybecauseIhavealreadycovereditinChapter1withtheLendingClubexample.Agoodexampleofaclassistheaccept/rejectdecisionthatanauditormakeswhendecidingwhetherornottotakeonanewclient.
Thediscussionthenmigratestounsupervisedvs.supervisedapproachesandwhetherornotwehaveaspecificquestion.Overall,arewetryingtofindpatterns(liketoCostCocustomersclusterintoidentifiablegroups)orhowoftendocustomersthataremorethan120dayslatepaytheamountsowed?Wethenintroducethevarioustypesofunsupervisedandsupervisedapproaches.Itrytocomeupwithanexampleofeachbecausethathelpsstudentsunderstandwhatwearetryingtosay.
Studentscanunderstandthisinformationandusuallythatisdeterminedbyhowgoodtheexampleswecomeupwith.
SuggestedTeamExercise
Therearemanypossibilitiesforteamexercises.Onemightbetohaveagrouptakeeachofthevarioustestapproachandcomeupwithanexampleofwhatfitsinthatspace.Givethemthewholelistoftestapproachesandgivethem10minutestotrytocomeupwithanexample.Forexample,whatisanaccountingproblemthatmightinvolveprofiling?
Alternatively,Ilikehavingstudentscomeupwithindependentvariablesforaregression.Sinceoneofmyresearchpapersfrom15yearsagopredictsthestockmarketreactiontoarestatementannouncement,Iwouldaskthestudentstotellmecharacteristicsofarestatementthatmightpredictthestockmarketresponseandthenfinallyputupwhatwefoundinourpaper.Ialwaysenjoyanexcusetobringresearchintotheclassroomandhere’smychance.
Palmrose,Zoe-Vonna,VernonJ.Richardson,andSusanScholz."Determinantsofmarketreactionstorestatementannouncements."
JournalofAccountingandEconomics
37.1(2004):59-89.
CHAPTER4
Visualizations:UsingVisualizationsandSummariestoShareResultswithStakeholders
BriefTopicalOutline
Introduction(Powerpoints4-2–4-4)
PurposeofDataVisualization(Powerpoint4-5)
QualitativevsQuantitative(Powerpoints4-6,4-7)
Declarativevs.Exploratory(Powerpoints4-8-4-10)
TypesofCharts(Powerpoints4-11–4-23)
RefiningtheCharts(Powerpoints4-24–4-29)
UseofWordingtoCreateInsight(Powerpoints4-30-4-35)
Summary(Powerpoint4-36)
CommentsandObservations
Ifindstudentsreallyenjoyvisualizations.Theyaregoodconsumersofitandnowthehopeisthattheybecomegoodproducersofit.
Studentshavenotusuallypreviouslythoughtmuchabouttypesofdata(qualitativevs.quantitative;declarativevs.exploratory).So,Iliketogiveabunchofexamples,oftencenteredaroundPowerpointslides4-7and4-8.Theexamplesusedontheslidearegood,butIliketopauseinmypresentationandhavethemthinkofothersimilarexamplesthatworkordon’twork.Iusuallylikeitwhentheymentionthewrongexampleofanindividualtypeandexplainingwhythatproposedvisualizationwon’tworkandthenwhereitdoesfit.
Ithenlikeslide4-10whichasksthequestionfromanotherdirectionandstatesherewehavesomedatasoisitqualitativeorquantitative;declarativeorexploratory?Ilikeslide4-17showinghowsomechartsillustratebiasoratleastmagnifythebias.Thesubsequentslidesshowinsomedetailtheprinciplesinshowinggoodvisualizations.
SuggestedTeamExercise
IfindstudentsarereallyhandyattheirlaptopsandgettingvisualizationsfromGoogleImages,etc.OnepossibleexercisemightbeforthestudenttosearchinGoogleImagesfor“WorstVisualizations”,“BiasedBarCharts”orthelike.ThenthestudentteamsprepareaPowerpointpresentationexplainingwhytheyarebadvisualizationsandthenreplacingthemwithwhattheyproposearegoodvisualizations.Hopefully,theotherstudentsintheclassroomwillthenrespondbyquestioningthepresentinggroupandofferingideasoftheirown.
CHAPTER5
TheModernAuditandContinuousAuditing
BriefTopicalOutline
Introduction(Powerpoints5-1-5-4)
TheModernAudit(Powerpoint5-5–5-10)
SummaryofAnalyticsAids(Powerpoints5-11)
EvaluateAuditData(Powerpoints5-12)
Homogeneousvs.HetereogeneousERPSystems(Powerpoints5-12–5-16)
AuditDataStandards(Powerpoints5-17–5-19)
SelectAppropriateAuditTasksandApproaches(Powerpoints5-20–5-26)
EvaluateAuditAlarmsinContinuousAuditing(Powerpoints5-27–5-33)
UnderstandWorkingPaperPlatforms(Powerpoint5-34–5-39)
Summary(Powerpoints5-40–5-41)
CommentsandObservations
Asyourecall,Chapters1-4laythefoundation,principallyfocusedaroundtheIMPACTmodelthatweusethroughoutthetext.Chapters5and6illustratetheIMPACTmodelspecificallyintheauditcontext(andsubsequentlyChapters7and8illustratestheIMPACTmodelinthemanagerialandfinancialaccountingcontextrespectively.Chapter5beginsbydiscussinghowdataanalyticsmightbeusedinthemodernaudit.Iliketothinkofthisdiscussionasthe“I”intheIMPACTmodeltohelpidentifythequestions.
Thenextlearningobjectiverevolvesaroundthechallengesingettingandevaluatingtheauditdata.UnlessthestudentshavetakenanERPclassorknowsomethingmoreaboutthem,IusuallyfindtheyhaveverylittleideaofhowERPsystemswork.ThediscussionofhomogeneousandheterogeneoussystemsleadstoagooddiscussionofhowERPsystemswork.Buteveniftherearehomogeneoussystems,therestillmightbeachallengeingettingthedatafromtheclient.Iusuallyhaveagoodsetofstudentsthathavebeenassociatedwitharecentauditandthechallengessometimesingettingtheappropriatedatafromtheclient.Thereason,oftentimes,thedatamightcomefromvarioussourcesanditmayneedtobecombinedinaspecificway.Wethentalkabouttheauditdatastandards.Igenerallywillgointosomedetailaboutwhattheauditdatastandardsdo,whytheyarevaluabletoauditorandauditeeandhowtheymaysetupameansofcontinuousauditinginthenot-so-distantfuture.
LearningObjective5-3and5-4involveadiscussionoftheauditplan.Itisagoodrefresherforthosewhohavetakentheauditclassand/orgoneonanauditinternship.IthinkitisanecessarydiscussionbeforegettingtotheauditalarmsandauditexceptionsthatmightbepartofacontinuousmonitororcontinuousauditdiscussioninLearningObjective5-5.
InLearningObjective5-6,Iliketostartthediscussionbytalkingabouttheroleofauditingincollectingevidencetosupportanauditjudgment,possiblyanauditopinion.Theresultsofthetestingdonewithdataanalyticsalsorequiresdocumentation.Orperhapsevenhowtheauditorrespondedtoanauditalarmorexception.Thismakestheresultsofdataanalyticsusefulinanaudit.
SuggestedTeamExercise
Oneideaforateamexerciseistodiscussauditexceptionsandalarms.
Herearesomepossiblescenarios:
Let’ssaywecollectdataonwhoentersmanualjournalentries(thoseenteredbyhumans).Howwouldwesetthethresholdonanalarm?Inotherwords,whenwouldwe,asaninternalauditor,wanttobeinformedthatanexceptionhadbeenmadeandwhatwouldwedowithit?
Whenwouldwewanttobenotifie
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生创新创业教程(慕课版 双色版 第3版) 课件 第1章 创新与创新能力
- 2025至2031年中国在线培训考试系统行业投资前景及策略咨询研究报告
- 《金融资产》课件2
- 2025至2031年中国IPOD连接线行业投资前景及策略咨询研究报告
- 2025至2030年中国陶瓷纤维刷辊数据监测研究报告
- 04骨连结幻灯片
- 《项目融资的组织》课件
- 【语文】《林教头风雪山神庙》课件+2024-2025学年统编版高一语文必修下册
- 水污染练习试题及答案
- 《贯通测量》课件2
- 《胎膜早破教案》课件
- 智慧农业技术助力农业精细化管理
- 苏教版四年级上册数学应用题100题及答案
- 指数函数及其图像与性质教案
- BPO糊的生产工艺
- 病毒性肝炎 健康宣教
- 《心脏听诊》课件2
- 人才流动问题与对策
- 肿瘤科放射防护课件
- 《无创dna产前检测》课件
- GB/T 17758-2023单元式空气调节机
评论
0/150
提交评论