版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页四川省阿坝市2025届九上数学开学质量检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在一条笔直的公路上有、两地,甲乙两人同时出发,甲骑自行车从地到地,乙骑自行车从地到地,到达地后立即按原路返回地.如图是甲、乙两人离地的距离与行驶时间之间的函数图象,下列说法中①、两地相距30千米;②甲的速度为15千米/时;③点的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.正确的个数为()A.1个 B.2个 C.3个 D.4个2、(4分)如果=2﹣x,那么()A.x<2 B.x≤2 C.x>2 D.x≥23、(4分)直角三角形纸片的两直角边长分别为6,8,现将△ABC如图折叠,使点A与点B重合,则折痕DE的长是()A. B. C. D.4、(4分)以下各组数中,能作为直角三角形的三边长的是A.6,6,7 B.6,7,8 C.6,8,10 D.6,8,95、(4分)关于函数y=-x-3的图象,有如下说法:①图象过点(0,-3);②图象与x轴的交点是(-3,0);③由图象可知y随x的增大而增大;④图象不经过第一象限;⑤图象是与y=-x+4平行的直线.其中正确的说法有()A.5个 B.4个 C.3个 D.2个6、(4分)菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为()A.48 B. C. D.187、(4分)如图,在正方形外取一点,连接、、,过点作的垂线交于点.若,,下列结论:①;②;③点到直线的距离为;④;⑤正方形.其中正确的是()A.①②③④ B.①②④⑤ C.①③④ D.①②⑤8、(4分)小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在中,,,将绕点A按顺时针方向旋转得到旋转角为,点B,点C的对应点分别为点D,点E,过点D作直线AB的垂线,垂足为F,过点E作直线AC的垂线,垂足为P,当时,点P与点C之间的距离是________.10、(4分)如图,正方形的边长为4,在这个正方形内作等边三角形(三角形的顶点可以在正方形的边上),使它们的中心重合,则的顶点到正方形的顶点的最短距离是___________.11、(4分)请写出的一个同类二次根式:________.12、(4分)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是_____cm.13、(4分)如图,一束光线从y轴上的点A(0,1)出发,经过x轴上的点C反射后经过点B(6,2),则光线从A点到B点经过的路线长度为.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知直线l1的解析式为y1=-x+b,直线l2的解析式为:y2=kx+4,l1与x轴交于点B,l1与l2交于点A(-1,2).(1)求k,b的值;(2)求三角形ABC的面积.15、(8分)电商时代使得网购更加便捷和普及.小张响应国家号召,自主创业,开了家淘宝店.他购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求y与x之间的函数关系式;(2)若某天小张销售该产品获得的利润为1200元,求销售单价x的值.16、(8分)定义:有三个角相等的四边形叫做三等角四边形.(1)在三等角四边形中,,则的取值范围为________.(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;(3)如图②,三等角四边形中,,若,,,则的长度为多少?17、(10分)如图①,矩形中,,,点是边上的一动点(点与、点不重合),四边形沿折叠得边形,延长交于点.图①图②(1)求证:;(2)如图②,若点恰好在的延长线上时,试求出的长度;(3)当时,求证:是等腰三角形.18、(10分)某小区有一块四边形空地ABCD,如图所示,现计划在这块地上种植每平方米60元的草坪用以美化环境,施工人员测得(单位:米):AB=3,BC=4,CD=12,DA=13,∠B=90°,求小区种植这种草坪需多少钱?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式组的整数解是__________.20、(4分)在平面直角坐标系中,△ABC上有一点P(0,2),将△ABC向左平移2个单位长度,再向上平移3个单位长度,得到的新三角形上与点P相对应的点的坐标是_____.21、(4分)已知y=xm-2+3是一次函数,则m=________
.22、(4分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是_____.23、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,根据要求画图.(1)把向右平移5个方格,画出平移的图形.(2)以点B为旋转中心,把顺时针方向旋转,画出旋转后的图形.25、(10分)1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.设气球上升时间为x(x≥0).(Ⅰ)根据题意,填写下表上升时间/min1030…x1号探测气球所在位置的海拔/m15…2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(Ⅲ)当0≤x≤50时,两个气球所在位置的海拔最多相差多少米?26、(12分)阅读下列解题过程:;.请回答下列问题:(1)计算;(2)计算.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:
y甲=-15x+30
y乙=由此可知,①②正确.
当15x+30=30x时,
解得x=
则M坐标为(,20),故③正确.
当两人相遇前相距10km时,
30x+15x=30-10
x=,
当两人相遇后,相距10km时,
30x+15x=30+10,
解得x=
15x-(30x-30)=10
解得x=
∴④错误.
故选C.本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.2、B【解析】试题分析:根据二次根式的性质,,可知x-2≤0,即x≤2.故选B考点:二次根式的性质3、D【解析】
先通过勾股数得到,再根据折叠的性质得到,,,设,则,,在中利用勾股定理可计算出x,然后在中利用勾股定理即可计算得到DE的长.【详解】直角三角形纸片的两直角边长分别为6,8,,又折叠,,,,设,则,,在中,,即,解得,在中,故选D.本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等也考查了勾股定理.4、C【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A、,不能构成直角三角形;B、,不能构成直角三角形;C、,能构成直角三角形;D、,不能构成直角三角形;故选C.考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.5、B【解析】
根据一次函数的性质和图象上点的坐标特征解答.【详解】解:①将(0,-3)代入解析式得,左边=-3,右边=-3,故图象过(0,-3)点,正确;
②当y=0时,y=-x-3中,x=-3,故图象过(-3,0),正确;
③因为k=-1<0,所以y随x增大而减小,错误;
④因为k=-1<0,b=-3<0,所以图象过二、三、四象限,正确;
⑤因为y=-x-3与y=-x+4的k值(斜率)相同,故两图象平行,正确.
故选:B.本题考查一次函数的性质和图象上点的坐标特征,要注意:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6、B【解析】试题解析:根据菱形的面积公式:故选B.7、D【解析】
①利用同角的余角相等,易得∠EDC=∠PDA,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠CED,结合三角形的外角的性质,易得∠CEP=90°,即可证;③过C作CF⊥DE,交DE的延长线于F,利用②中的∠BEP=90°,利用勾股定理可求CE,结合△DEP是等腰直角三角形,可证△CEF是等腰直角三角形,再利用勾股定理可求EF、CF;⑤在Rt△CDF中,利用勾股定理可求CD2,即是正方形的面积;④连接AC,求出△ACD的面积,然后减去△ACP的面积即可.【详解】解:①∵DP⊥DE,∴∠PDE=90°,∴∠PDC+∠EDC=90°,∵在正方形ABCD中,∠ADC=90°,AD=CD,∴∠PDC+∠PDA=90°,∴∠EDC=∠PDA,在△APD和△CED中∴(SAS)(故①正确);②∵,∴∠APD=∠CED,又∵∠CED=∠CEA+∠DEP,∠APD=∠PDE+∠DEP,∴∠CEA=∠PDE=90°,(故②正确);③过C作CF⊥DE,交DE的延长线于F,∵DE=DP,∠EDP=90°,∴∠DEP=∠DPE=45°,又∵②中∠CEA=90°,CF⊥DF,∴∠FEC=∠FCE=45°,∵,∠EDP=90°,∴∴,∴CF=EF=,∴点C到直线DE的距离为(故③不正确);⑤∵CF=EF=,DE=1,∴在Rt△CDF中,CD2=(DE+EF)2+CF2=,∴S正方形ABCD=CD2=(故⑤正确);④如图,连接AC,∵△APD≌△CED,∴AP=CE=,∴=S△ACD﹣S△ACP=S正方形ABCD﹣×AP×CE=×()﹣××=.(故④不正确).故选:D.本题利用了全等三角形的判定和性质、正方形的性质、正方形和三角形的面积公式、勾股定理等知识,综合性比较强,得出,进而结合全等三角形的性质分析是解题关键.8、A【解析】
设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:,故选A.本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.二、填空题(本大题共5个小题,每小题4分,共20分)9、3或1.【解析】
由旋转的性质可知△ACB≌△AED,推出∠CAB=∠EAD=∠CBA,则当∠DAF=∠CBA时,分两种情况,一种是A,F,E三点在同一直线上,另一种是D,A,C在同一条直线上,可分别求出CP的长度.【详解】解:∵AC=BC=10,
∴∠CAB=∠CBA,
由旋转的性质知,△ACB≌△AED,
∴AE=AC=10,∠CAB=∠EAD=∠CBA,
①∵∠DAF=∠CBA,
∴∠DAF=∠EAD,
∴A,F,E三点在同一直线上,如图1所示,
过点C作CH⊥AB于H,
则AH=BH=AB=7,
∵EP⊥AC,
∴∠EPA=∠CHA=90°,
又∵∠CAH=∠EAP,CA=EA,
∴△CAH≌△EAP(AAS),
∴AP=AH=7,
∴PC=AC-AP=10-7=3;
②当D,A,C在同一条直线上时,如图2,
∠DAF=∠CAB=∠CBA,
此时AP=AD=AB=7,
∴PC=AC+AP=10+7=1.
故答案为:3或1.本题考查了旋转的性质,等腰三角形的性质,全等三角形的判定等,解题的关键是能够分类讨论,求出两种情况的结果.10、【解析】
当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上,在△AOE中,∠CAE=45°,∠AOE=60°,OE=r,解三角形可求r,即可求最短距离.【详解】如图:当G,O,C共线时,△EFG的顶点到正方形ABCD的顶点的最短,即点G在对角线上.作EM⊥AC于M∵ABCD是正方形,AB=4∴AC=,AO=,∠CAB=45°∵△EFG是等边三角形∴∠GOE=120°∴∠AOE=60°设OE为r∵∠AOE=60°,ME⊥AO∴MO=OE=r,ME=MO=r∵∠MAE=45°,AM⊥ME∴∠MAE=∠MEA=45°,∴AM=ME=r,∵AM+MO=AO∴r+r=∴r=∵AG=AM=MO+OG=r+r+r=∴GC=故答案为:.本题主要考查了两点间距离最短,由题意分析出距离最短的情况是解题的关键.11、【解析】试题分析:因为,所以与是同类二次根式的有:,….(答案不唯一).考点:1.同类二次根式;2.开放型.12、1【解析】
根据三角形中位线定理进行解答即可得.【详解】∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC==1cm,故答案为1.本题考查了三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13、3【解析】
解:如图,过点B作BD⊥x轴于点D,根据已知条件易得△AOC∽△BDC,根据相似三角形对应边的比相等可得,又因点A(0,1),点B(6,2),可得0A=1,BD=2,OD=6,代入即可求得OC=2,CD=4,由勾股定理求得AC=,BD=2,即可得光线从A点到B点经过的路线长度为3.考点:相似三角形的应用;坐标与图形性质.三、解答题(本大题共5个小题,共48分)14、(1)k=2,b=1;(2)1.【解析】
(1)利用待定系数法求出k,b的值;(2)先根据两个函数解析式计算出B、C两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【详解】(1)∵l1与l2交于点A(-1,2),∴2=-k+4,2=1+b,解得k=2,b=1;(2)当y=0时,2x+4=0,解得x=-2,∴B(-2,0),当y=0时,-x+1=0解得x=1,∴C(1,0),∴△ABC的面积=×(2+1)×2=1.此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.15、(1)y=−x+180;(2)120元或160元;【解析】
(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据题意列出方程,解方程即可.【详解】(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:,解得:故y与x的函数关系式为y=−x+180;(2)由题意得:(−x+180)(x−100)=1200,解得:x=120,或x=160.答:若某天该网店店主销售该产品获得的利润为1200元,则销售单价为120元或160元.此题考查一元二次方程的应用,一次函数的应用,解题关键在于列出方程16、(1);(2)见解析;(3)的长度为.【解析】
(1)根据四边形的内角和是360°,确定出∠BAD的范围;(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可;(3)延长BA,过D点作DG⊥BA,继续延长BA,使得AG=EG,连接DE;延长BC,过D点作DH⊥BC,继续延长BC,使得CH=HF,连接DF,由SAS证明△DEG≌△DAG,得出AD=DE=,∠DAG=∠DEA,由SAS证明△DFH≌△DCH,得出CD=DF=6,∠DCH=∠DFH,证出DE∥BF,BE∥DF,得出四边形DEBF是平行四边形,得出DF=BE=6,DE=BF=,由等腰三角形的性质得出EG=AG=(BE-AB)=1,在Rt△DGA中,由勾股定理求出DG==4,由平行四边形DEBF的面积求出,在Rt△DCH中,由勾股定理求出,即可得出BC的长度.【详解】(1)∵∴∴∵∴∴故答案为:(2)证明:∵四边形为平行四边形,∴,∴∵,∴∵,,∴∴四边形是三等角四边形;(3)延长,过点作,继续延长,使得,连接;延长,过点作,继续延长,使得,连接,如图所示:在和中,∴,∴,同理可得,∴,∵∴,∴,∴四边形是平行四边形,∴,,∴在中,∵平行四边形的面积,即:∴在中,∴故答案为:的长度为.本题是四边形综合题目,考查了三等角四边形的判定与性质,翻折变换-折叠问题,四边形的内角和定理,平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等和运用勾股定理是解决问题的关键.17、(1)证明见解析;(2);(3)证明见解析【解析】
(1)由矩形的性质和平行线的性质得出∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,得出∠APN=∠PAN,即可得出NA=NP;(2)由矩形的性质得出CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,由勾股定理得出AE==5,求出DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得出方程,解方程即可;(3)过点D作GH∥AF,交EF于G,交AP于H,则GH∥AF∥PE,证出△PDH是等边三角形,得出DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,证出DH=AH,得出AH=PH,由平行线分线段成比例定理得出,得出EG=FG,再由线段垂直平分线的性质得出DE=DF即可.【详解】(1)证明;∵四边形ABCD是矩形,∴AB∥CD,∴∠BAP=∠APN,由折叠的性质得:∠BAP=∠PAN,∴∠APN=∠PAN,∴NA=NP;(2)解:∵四边形ABCD是矩形,∴CD=AB=4,AD=BC=3,∠BAD=∠B=∠ADC=90°,∴∠PDE=90°,由折叠的性质得:AF=AB=4,EF=CB=3,∠F=∠B=90°,PE=PC,∴AE==5,∴DE=AE-AD=2,设DP=x,则PE=PC=4-x,在Rt△PDE中,由勾股定理得:DP2+DE2=PE2,即x2+22=(4-x)2,解得:,即;(3)证明:过点D作GH∥AF,交EF于G,交AP于H,如图所示:则GH∥AF∥PE,∴∠PHD=∠NAH,∵∠PAD=30°,∴∠APD=90°-30°=60°,∠BAP=90°-30°=60°,∴∠PAN=∠BAP=60°,∴∠PHD=60°=∠APD,∴△PDH是等边三角形,∴DH=PH,∠ADH=∠PHD-∠PAD=30°=∠PAD,∴DH=AH,∴AH=PH,∵GH∥AF∥PE,∴,∴EG=FG,又∵GH⊥EF,∴DE=DF,∴△DEF是等腰三角形.本题考查了矩形的性质、翻折变换的性质、等腰三角形的判定、勾股定理、等边三角形的判定与性质、平行线分线段成比例定理、线段垂直平分线的性质等知识;本题综合性强,熟练掌握翻折变换的性质和等腰三角形的判定是解题的关键.18、小区种植这种草坪需要2160元.【解析】
仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,在直角三角形ABC中可求得AC的长,由AC、CD、AD的长度关系可得三角形ACD为直角三角形,AD为斜边;由此看,四边形ABCD由Rt△ABC和Rt△ACD构成,则容易求解.【详解】如图,连接AC,∵在△ABC中,AB=3,BC=4,∠B=90°,∴AC==5,又∵CD=12,DA=13,∴AD2=AC2+CD2=169,∴∠ACD=90°,∴S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36(平方米),∴60×36=2160(元),答:小区种植这种草坪需要2160元.本题考查了勾股定理以及其逆定理的应用,熟练掌握是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、,,1【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,最后求其整数解即可.【详解】解:;由①得:;由②得:;不等式组的解集为:;所以不等式组的整数解为,,1,故答案为:,,1.本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20、(﹣2,5)【解析】
平移的规律:平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:由点的平移规律可知,此题规律是:向左平移2个单位再向上平移3个单位,照此规律计算可知得到的新三角形上与点P相对应的点的坐标是(0﹣2,2+3),即(﹣2,5).故答案为(﹣2,5).本题考查图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.21、3【解析】
一次函数自变量的最高次方为1,据此列式即可求出m.【详解】由题意得:m-2=1,∴m=3,故答案为3.此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.22、x>1.【解析】试题解析:∵一次函数与交于点,∴当时,由图可得:.故答案为.23、1﹣1【解析】
取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.【详解】如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年统编版2024高一语文上册阶段测试试卷含答案
- 2025年新世纪版必修二历史上册阶段测试试卷
- 2025年冀少新版八年级历史下册月考试卷含答案
- 2025年沪教版九年级历史上册月考试卷
- 2025年统编版2024八年级历史下册月考试卷含答案
- 2025年度智能泥工施工与设备维护一体化合同3篇
- 二零二五年度重型工业门窗安装施工合同4篇
- 二零二五版铝合金模板工程安装与节能减排合同4篇
- 承包菜市场水沟合同(2篇)
- 二零二五年度便利店线上线下融合项目承包合同4篇
- 吉林省吉林市普通中学2024-2025学年高三上学期二模试题 生物 含答案
- 《电影之创战纪》课件
- 社区医疗抗菌药物分级管理方案
- 开题报告-铸牢中华民族共同体意识的学校教育研究
- 《医院标识牌规划设计方案》
- 公司2025年会暨员工团队颁奖盛典携手同行共创未来模板
- 新沪科版八年级物理第三章光的世界各个章节测试试题(含答案)
- 夜市运营投标方案(技术方案)
- 电接点 水位计工作原理及故障处理
- 国家职业大典
- 2024版房产代持协议书样本
评论
0/150
提交评论